$\displaystyle z_{ij} = {x_{ij} - \bar{x}_j\over \sigma_{x_j}}
$ (1)

$\displaystyle \bar{x}_{j}$ $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^mx_{ij}$  
$\displaystyle \sigma_{x_j}^2$ $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^m (x_{ij}-\bar{x}_j)^2$ (2)


$\displaystyle \bar{z}_{j}$ $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^mz_{ij}=0$  
$\displaystyle \sigma_{z_j}^2$ $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^m (z_{ij})^2={1\over m}\sum_{i=1}^m\left({x_{ij} - \bar{x}_j\over \sigma_{x_j}}\right)^2=1$ (3)

  $\displaystyle Z=
\left(
\begin{array}{cccc}
z_{11} & z_{12} & \ldots & z_{1n} \...
...olumn{4}{c}{\dotfill}\\
z_{m1} & z_{m2} & \ldots & z_{mn}
\end{array}\right)
$ (4)


$\displaystyle R={1\over m}Z^{T}Z$ $\textstyle =$ $\displaystyle {1\over m}
\left(
\begin{array}{cccc}
z_{11} & z_{21} & \ldots & ...
...icolumn{4}{c}{\dotfill}\\
z_{m1} & z_{m2} & \ldots & z_{mn}
\end{array}\right)$  
  $\textstyle =$ $\displaystyle {1\over m}\left(
\begin{array}{cccc}
\sum_{i=1}^{m} z_{i1}^2 & \s...
...um_{i=1}^{m} z_{in}z_{i2} & \ldots & \sum_{i=1}^{m} z_{in}^2
\end{array}\right)$ (5)

  $\displaystyle \rho_{jk}
={1/m\sum_{i=1}^m(x_{ij}-\bar{x}_j)(x_{ik}-\bar{x}_k)\over
\sqrt{\sum_{i=1}^m(x_{ij}-\bar{x}_j)^2/m\sum_{i=1}^m(x_{ik}-\bar{x}_k)^2}/m}
$ (6)

  $\displaystyle u_{i}=a_1z_{i1}+a_2z_{i2}+...+a_nz_{in}=\sum_{j=1}^{n}a_jz_{ij}
$ (7)


$\displaystyle S$ $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^m(u_{i})^2$  
  $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^m(\sum_{j=1}^{n}a_jz_{ij})^2$  
  $\textstyle =$ $\displaystyle {1\over m}\sum_{i=1}^m(a_1^2z^2_{i1}+a_2^2z^2_{i2}+...
+2a_1a_2z_{i1}z_{i2}+a_1a_3z_{i1}z_{i3}+..)$  
  $\textstyle =$ $\displaystyle a_1^2+a_2^2+...+2\rho_{12}a_1a_2+...$ (8)

  $\displaystyle a_1^2+a_2^2+...a_n^2=1
$ (9)

  $\displaystyle f(a_1,a_2,...a_n,\lambda) = a_1^2+a_2^2+...a_n^2+2\rho_{12}a_1a_2+2\rho_{13}a_1a_3+.... - \lambda(a_1^2+a_2^2+...a_n^2-1)
$ (10)

  $\displaystyle {\partial f\over \partial a_k}=0 \quad 1\le k \le n
$ (11)


$\displaystyle 2a_1+2\rho_{12}a_2+2\rho_{13}a_3+.... - 2\lambda a_1$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle 2\rho_{21}a_1+2a_2+2\rho_{23}a_3+.... - 2\lambda a_2$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle .....$      
$\displaystyle 2\rho_{n1}a_1+2\rho_{n2}a_2 + .....2a_n - 2\lambda a_n$ $\textstyle =$ $\displaystyle 0$ (12)

  $\displaystyle \left(
\begin{array}{ccccc}
1 & \rho_{12} & \rho_{13} & \ldots &...
...lumn{1}{c}{\dotfill}\\
a_k\\
\multicolumn{1}{c}{\dotfill}
\end{array}\right)
$ (13)


$\displaystyle a_1^2+\rho_{12}a_1a_2+\rho_{13}a_1a_3+....$ $\textstyle =$ $\displaystyle \lambda a_1^2$  
$\displaystyle \rho_{21}a_2a_1+a_2^2+\rho_{23}a_2a_3+....$ $\textstyle =$ $\displaystyle \lambda a_2^2$  
$\displaystyle .....$      
$\displaystyle \rho_{n1}a_na_1+\rho_{n2}a_na_2 + .....a_n^2$ $\textstyle =$ $\displaystyle \lambda a_n^2$ (14)

  $\displaystyle S = \lambda
$ (15)