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Abstract

We conducted rapid decompression experiments using bubble-bearing viscoelastic fluid in a vertical shock tube. We varied

vesicularity / and pressure difference between the inside Pg and the outside Po of the bubbles, DP=Pg�Po, to understand the

behavior of bubbly-magmas under rapid decompression. We find that the potential energy, which depends on the initial

vesicularity /, Pg, and Po, determines the expansion velocity of the bubbly fluid during rapid decompression. Higher potential

energy, caused by a higher / and a larger DP, leads to faster expansion. The expansion style also depends on the vesicularity /
and on the pressures Pg and Po. We observe five different styles of expansion during the rapid decompression that depend on /
and DP. When both / and DP are small, bnothingQ occurs. As / and DP increase, the bubbly fluid reacts more violently. First,

the surface of the bubbly fluid bdeformsQ and the fluid elongates in the vertical direction. For sufficient elongation the fluid can

bdetachQ from the tube wall. As / and DP continue to increase, bubble walls can break, a process we refer to as bpartial ruptureQ.
Finally, for still larger DP and /, both bubble walls and plateau borders break allowing the fluid to bfragmentQ into discrete

pieces and erupt explosively. Our experiments show that a larger potential energy, which results from higher / and larger DP,

causes a faster expansion of magma which in turn promotes fragmentation and thus explosive eruption. If we assume that the

pressure inside bubbles Pg scales with the depth of bubbly magma, measuring the magma vesicularity in conduits or domes as a

function of the depth before eruption would help assess volcanic hazard.
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1. Introduction

The 1980 explosive eruption of Mount St. Helens

followed a large landslide, which caused rapid decom-

pression of subsurface magma [1]. This event indi-

cates that rapid decompression of magma may be
tters 236 (2005) 269–284
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Fig. 1. Illustration of experimental apparatus. The dimension of the

high pressure tube is 0.05 m in diameter, 0.25 m in length, and

4.9�10�4 m�3 in volume. The low pressure tank is 0.6 m in

diameter, 0.65 m in length, and 0.18 m�3 in volume.
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important for initiating explosive eruptions. Because a

rapid decompression can fragment continuous mag-

mas into discrete pieces [2], the eruption following

decompression may ultimately become explosive

[3–5].

Three basic models have been proposed for the

mechanism of fragmentation. First, in the bcritical
vesicularity modelQ, a critical vesicularity determines

the fragmentation threshold [3]. Second, in the bbrittle
failure modelQ, the liquid magma behaves similar to

solid magma, and the bubble walls fail when the

maximum stress exceeds the strength of the magma.

This theory has been applied to molten magma to

predict the fragmentation threshold [6–8]. Third, the

brelaxation time scale modelQ is based on the idea that

when strain rates during deformation exceed the

inverse relaxation time of melt, 1 / tr, brittle fragmen-

tation may result [9–12].

Preexisting bubbles should be important for mag-

mas to react explosively to a rapid decompression.

The stress distribution around bubbles strongly

depends on the vesicularity [8]: larger vesicularity

can generate a larger tensile stress under the same

overpressure. Deformation of the magma by rapid

decompression also should depend on the vesicularity.

Because the gas inside the bubbles is much more

compressible than the surrounding magma, the

volume change caused by decompression will be

dominated by bubble expansion [13–16]. Laboratory

experiments confirm that preexisting bubbles reduce

the overpressure required for fragmentation [17–20].

In addition, the texture of pumice is often consistent

with eruption of a bubbly magma that experiences

rapid decompression [21].

The response of bubbly fluid to rapid decompres-

sion is not yet understood, despite its importance.

Because this problem involves several interacting

physical processes and properties, including viscoe-

lasticity, fragmentation, shock wave propagation, and

two-phase flow, it is a challenging problem to study

using theoretical and numerical approaches. We thus

use an experimental approach with analogue fluids

[22], in which we can control the fluid’s vesicularity

and viscoelastic properties. We focus on observing

and characterizing the response of bubbly fluid to

rapid decompression in order to study the effects of

preexisting bubbles on eruptions induced by rapid

decompression.
2. Experimental method

The decompression experiments are conducted in a

shock tube type apparatus (Fig. 1). The bubbly fluid,

our analogue magma, is contained in the shock tube

and is separated from a large low-pressure tank by

diaphragms. When the diaphragms break, a rarefac-

tion wave propagates into the tube, and the bubbly

fluid experiences rapid decompression. The shock

tube is made of a polycarbonate and has an internal

diameter of 50 mm and a length of 250 mm. The

volume of the low-pressure tank is 0.18 m3. The initial

sample pressure Pg is 10
5 Pa, and pressure inside the

low-pressure tank Po is variable. Two diaphragms are

inserted between the high-pressure tube and the low-

pressure tank. Diaphragms disrupt because of the

pressure differential across it. We use four kinds of

diaphragms to change the initial pressure difference;

2, 4.8, 6 Am thickness polyethylene films and com-

mercial aluminum foil. When the diaphragms rupture,

the disruption of the film or foil is nearly complete,

resulting in an opening that is essentially the same size

as the outlet to the shock tube. We can control the

timing of diaphragm rupture and adjust the pressure

difference between two tanks by changing the pres-

sure inside the small space between the two dia-
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phragms. Images of the reaction of the bubbly fluid

are recorded by a high speed digital video camera at a

rate of 2000 frames/s with resolution of 1280�256

pixels. To obtain a better image, two lights illuminate

the high pressure tube. The heat produced by the

lamps can increase the pressure and temperature

inside the tube, but never to more than 1.03�105

Pa and 40 8C, respectively. Because the lights are

placed at the top and bottom of the high pressure

tube, the center of the tube appears darker than the

top and bottom in some images.

For our magma analogue, we use xanthan gum

solution, which is a viscoelastic fluid (Ina Food Indus-

try Co.). We use three different concentrations of

xanthan gum in water, 0.1,0.3, and 0.5 wt.%, to char-

acterize the viscosity dependence of the decompression

dynamics. Xanthan gum solutions shows strong shear-

rate dependence of viscosity, and a higher concentra-

tion provides a larger viscosity as shown in Fig. 2. Fig.

3 shows the measured storage GV and loss GW moduli

of xanthan gum solutions. When the storage modulus

is much lower than the loss modulus, i.e., GVbGW,
the fluid behaves as a bliquid-likeQ fluid. On the other

hand, when GVHGW, and GV is nearly frequency-

independent, the fluid is bsolid-likeQ. The frequency

at the crossover of GV and GW is the characteristic

relaxation time. Thus, when the xanthan gum concen-

tration is 0.1 wt.%, the relaxation time is around 1 s
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Fig. 2. The viscosity of xanthan gum solution as a function of shear

rate. Crosses, circles, and asterisks show the concentration of

xanthan gum in water which are 0.1, 0.3, and 0.5 wt.%, respectively,

and each line is calculated by g =0.40ċ�0.55, g =2.7ċ�0.68, g =
5.7ċ�0.73, respectively.
and when xanthan gum concentration is higher than

0.3 wt.%, the relaxation time is longer than 10 s. Vis-

cosity and dynamic moduli are measured with a cone-

and-plate rheometer (Thermo Haake Rheoscope).

Bubbles are added to the fluid by a hand mixer.

Vesicularity is controlled by the duration of beating.

The average bubble radii are 0.13, 0.080, and 0.063

mm for 0.1, 0.3, and 0.5 wt.% solutions, respectively.

These are measured with a microscope within 30 min

after beating. Bubble radii increase in time through

coalescence. Experiments are performed within 30

min after beating except for experiment aV in Table

1. The distribution of bubble radii is exponential or

unimodal rather than power law. To decrease surface

tension, 0.4 vol.% of surfactant (Walgreens hand

soap) was added to the xanthan gum solutions. Esti-

mated surface tension is between 73 and 35 mN m�1

which is a typical value for fresh water and water

saturated with surfactant, respectively [23]. Measured

viscosity and dynamic moduli with and without sur-

factant are the same. Vesicularity is calculated by

measuring the weight and volume of the beaten

fluid. The bubbly fluid is poured into the high pres-

sure tube from the top. When we pour even bubble-

free fluid, a small number of bubbles are created and

entrained into the fluid. From photographs we esti-

mate a vesicularity of about 0.01, and thus assume this

is the lowest vesicularity in our experiments. In

experiments with bubbly fluids, we expect a similar



Table 1

Experimental conditions and results

/ Pg�105 (Pa) Po�105 (Pa) DP�105 (Pa) Concentration (wt.%) ve (m s-1) Pattern

O(10�2) 1.00 0.35 0.65 0.1 0.00 Nothing

0.53 1.01 0.37 0.64 0.1 8.70 Fragmentation aV
0.66 1.00 0.10 0.90 0.1 15.20 Fragmentation

0.66 0.99 0.77 0.22 0.1 2.60 Detachment

0.65 1.01 0.34 0.67 0.1 11.60 Fragmentation

O(10�2) 1.01 0.48 0.53 0.3 0.00 Nothing

0.18 0.99 0.20 0.79 0.3 3.90 Detachment

0.41 1.02 0.14 0.88 0.3 14.80 Fragmentation

O(10�2) 1.03 0.34 0.69 0.5 0.00 Nothing e

0.08 1.00 0.09 0.91 0.5 6.40 Partial rupture

0.10 1.00 0.07 0.93 0.5 7.30 Detachment

0.13 1.00 0.35 0.65 0.5 3.30 Detachment

0.13 0.99 0.79 0.20 0.5 0.80 Nothing

0.15 0.99 0.36 0.63 0.5 4.20 Detachment

0.22 1.01 0.07 0.94 0.5 12.60 Fragmentation

0.23 1.01 0.35 0.66 0.5 3.90 Detachment c

0.26 1.01 0.41 0.60 0.5 4.80 Detachment

0.27 1.01 0.25 0.76 0.5 10.47 Partial rupture

0.34 1.01 0.08 0.93 0.5 13.60 Fragmentation

0.41 1.00 0.80 0.20 0.5 1.80 Deformation

0.46 1.02 0.43 0.59 0.5 7.58 Partial rupture

0.48 1.00 0.44 0.56 0.5 8.40 Detachment

0.58 1.00 0.79 0.21 0.5 2.60 Deformation d

0.58 1.01 0.06 0.95 0.5 18.10 Fragmentation a

0.60 1.00 0.11 0.89 0.5 21.77 Fragmentation

0.63 1.00 0.48 0.52 0.5 10.75 Partial rupture

0.63 1.02 0.15 0.87 0.5 18.00 Fragmentation

0.63 1.00 0.04 0.96 0.5 26.45 Fragmentation

0.65 1.01 0.40 0.61 0.5 15.13 Partial rupture

0.69 0.90 0.24 0.66 0.5 18.36 Fragmentation

0.71 1.03 0.09 0.94 0.5 33.79 Fragmentation

0.78 1.00 0.40 0.60 0.5 13.40 Fragmentation

0.79 1.00 0.59 0.41 0.5 8.30 Partial rupture b
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small change in vesicularity as the fluid is poured into

the shock tube. The segregation of bubbles from the

liquid within the shock tube is not observed except for

experiment aV (Table 1) and we thus assume that the

bubbles are distributed uniformly in the liquid. The

volume fraction of dissolved air in water under atmo-

spheric pressure is less than 2 vol.%, is sufficiently

small compared to the volume of mechanically added

bubbles, and does not influence our conclusions.

Experiments are conducted at higher pressure and

lower temperature than the evaporation curve of

water, so the expansion of preexisting bubbles, rather

than boiling, should dominate the volume change.

We conduct a series of experiments with varying

initial vesicularity /, initial pressure difference bet-
ween two tanks (overpressure) DP=Pg�Po, and vis-

coelastic properties.
3. Results

Experiments show that larger initial vesicularity

/ and larger overpressure DP generate faster expan-

sion of bubbly fluids. The expansion patterns also

depend on vesicularity and overpressure. Fig. 4

summarizes the experimental results. We observe

five styles of expansion following rapid decompres-

sion: (a) fragmentation, (b) partial rupture, (c) detach-

ment, (d) deformation, and (e) nothing. Only in the

case of fragmentation (a) is the decompressed fluid
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Fig. 4. Digital photographs showing the response of the bubbly fluid in the shock tube. The interval between images is 1.5 ms. The height is 0.25

m, and the diameter is 0.05 m. The brightness of the fluid depends on vesicularity. The five experiments show (a) fragmentation (/ =0.58,

DP=9.5�104 Pa), (b) partial rupture (/ =0.79, DP=4.1�104 Pa), (c) detachment (/ =0.23, DP=6.6�104 Pa), (d) deformation (/ =0.58,

DP=2.1�104 Pa), and (e) nothing (/ =O(10�2), DP=6.9�104 Pa).
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ejected from the shock tube. Details of the expe-

rimental conditions and results are summarized in

Table 1.
Fig. 4a shows a typical example of ‘‘fragmen-

tationQ. The fluid expands rapidly as the bubbles

expand (6 ms). As the bubbly fluid expands vertically,
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larger bubbles form. These appear to be generated by

breaking bubble walls and through bubble coales-

cence (12 ms). Finally, the fluid fragments layer by

layer, which is observed as white and black bands, as

indicated by arrows in the figure (24–34.5 ms). The

bands migrate upward (24–34.5 ms). At the end of the

experiment, only a small fraction of the fluid remains

in the shock tube: most of the fluid is ejected into the

low-pressure tank and hits the tank’s roof.

Fig. 5aV1–4 shows enlarged photographs of case aV.
We show this case instead of Fig. 4a, because the

expansion velocity of Fig. 4a is too fast and preexist-

ing bubbles are too small to see details. Case aV is
conducted after waiting an hour so that coalescence of

preexisting bubbles produces larger radii. The dark
a'1 a'2 a'3 a'4

b1 b2 c1 c2
0 ms 1 ms 3 ms 12 ms

3 ms 15 ms3 ms 12 ms

Fig. 5. Enlarged photographs. The height is 0.15 m, and the dia-

meter is 0.05 m. (aV1–aV4) Snap shots for a case with / =0.53,

DP=6.4�104 Pa, at 0, 1, 3, 12 ms. (b1, b2) Enlarged photographs

of Fig. 4b at 3, 12 ms. (c1, c2) Enlarged photographs of Fig. 4c at 3,

15 ms.
region at the bottom of the tube is accumulated liquid.

The vesicularity in the white region is larger than the

measured value. At 1 ms, the rarefaction wave has

propagated downward and reached the middle of the

bubbly fluid; bubbles observed at 0 ms have disap-

peared and are replaced by vertical black streaks in the

upper half of the bubbly fluid. This indicates that the

decompression wave elongates bubbles which are

observed as black streaks. In deeper parts of the

shock tube, undeformed bubbles still exist. This sug-

gests that the rarefaction wave deforms each bubble

rather than the whole fluid at this stage of the decom-

pression. At 3 ms, the black streaks reach at the

bottom of the tube and also become wider. At 12

ms, much of the fluid in the middle of the tube appears

to have been evacuated, suggesting that fragmentation

has occurred.

Sometimes we observe structures which resem-

ble those observed in the fragmentation cases, but

do not observe the critical moment of fragmenta-

tion. These situations arise when fluids that adhere

to the tube wall make the inside invisible, or when

the images do not extend far enough up the shock

tube. We thus classify experiments in which we

directly observe discrete fragments or in which

fluid ejected from the tube hits the roof of the low-

pressure tank as fragmentation. In all cases, the max-

imum volume expansion of bubbly fluid without

inertia is insufficient to cause the fluid to enter the

low-pressure tank. Hence, fluid can only be ejected

into the low pressure tank if it undergoes fragmenta-

tion. We refer to this style of expansion as dexplosiveT
expansion.

bPartial ruptureQ is shown in Fig. 4b. An enlarged

photograph is shown in Fig. 5b1,2. The vesicularity is

larger than that in Fig. 4a but the overpressure is

smaller than that in Fig. 4a. When the rarefaction

wave arrives, bubbles elongate parallel to the tube,

as they do in Fig. 5aV (Fig. 5b 3 ms). The fluid

expands more slowly than in Fig. 4a, and a texture

that resembles a net develops (Fig. 5b 12 ms). This

structure then moves upward and the liquid phase

accumulates at the top of the expanding fluid (18

ms). As the fluid stretches, it detaches from the

tube wall, which is indicated by a circle in Fig. 4b

(27 ms). In this case, both the liquid and gas become

continuous phases, whereas in the process depicted in

Fig. 4a, fragmentation-disrupted fluid forms discrete



Table 2

Notations

/ Initial vesicularity

Pg Initial pressure inside of bubbles Pa

Po Pressure outside of bubbles Pa

DP Pg�Po Pa

tr Relaxation time scale s

GV Storage modulus Pa

GW Loss modulus Pa

ċ Shear rate s�1

ve Expansion velocity of bubbly fluid m s�1

DĤmod Potential energy defined by Eq. (A.7) J m�3

c Isentropic exponent

qf Density of the bubbly liquid kg m�3

E Young’s modulus Pa

r Poisson’s ratio

e Axial strain (cylindrical coordinates)

ec Critical axial strain to break

rrr Radial stress Pa

urr Radial strain

uhh Tangential strain

uhhc Critical tangential strain to break

r r component of vector in spherical

coordinate system

R1 Bubble radius m

R2 Outer radius of bubble shell m

qg Density of the gas phase kg m�3

Ĥ0 Volumetric reservoir enthalpy J m�3

DĤ Volumetric enthalpy change J m�3

DŴ Volumetric work done to the low

pressure chamber

J m�3

dV̂ Volumetric volume change

DÛ Volumetric change of internal energy J m�3

DQ̂ Volumetric additional heat J m�3

O(x) x order of magnitude
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parcels. In Fig. 4b, gas can escape from the bubbly

liquid.

bDetachmentQ is shown in Fig. 4c. An enlarged

photograph is shown in Fig. 5c1,2. Both vesicularity

and overpressure are smaller than those in Fig. 4a.

When the rarefaction wave arrives, bubbles and the

entire fluid column are stretched vertically (3 ms).

Subsequently, the fluid detaches from the tube wall

(6 ms), indicated by a circle in the figure. The

detached fluid has a mesh pattern, as shown in Fig.

5c (15 ms), and stretches without interacting with the

walls. Because of its detachment, the horizontal width

of the fluid column decreases, as indicated by arrows

at 3 and 30 ms in the figure.

bDeformationQ is shown in Fig. 4d. The vesicular-

ity is almost the same as that in Fig. 4a but the

overpressure is smaller than that in Fig. 4b. When

the rarefaction wave arrives, the bubbles elongate

vertically. Some bubbles interconnect, and the top of

the fluid rises upward (6 ms). However, the final

height caused by expansion is much smaller than

that observed in previous cases, as denoted by a

white line in the figure.

Fig. 4e shows the case in which bnothingQ occurs.
The change of the background color between the first

and second images shows the arrival of the rarefac-

tion wave because the mist formed by decompression

reflects the light used to illuminate the fluid. After the

arrival of the rarefaction wave preexisting bubbles

gradually expand until 4.5 ms; this is observed as

an increase in reflection intensity. Small white spots

are generated in the fluid where the color was initi-

ally observed as black. The resolution of the images,

however, is not sufficient to determine whether the

black region indicates that the initial bubbles are too

small to be observed or that there are no bubbles in

which case the white spots represent nucleated bub-

bles. After the expansion of bubbles, the bubbles

and surface of the fluid oscillate in the vertical

direction. The reflection intensity (amount of bub-

bles) decreases after 6 ms, suggesting the escape or

dissolution of bubbles. The mist and the fluid sur-

face oscillate at the same frequency. Upward and

downward motion of the fluid surface increases and

decreases the reflection intensity, respectively, im-

plying the expansion and shrinkage of bubbles, res-

pectively. The volume change of the bubbly fluid,

however, is negligible.
4. Discussion

4.1. Expansion velocity

Larger pressure changes and vesicularity cause

faster expansion, as shown by the white lines in Fig.

4. The expansion can be divided into three stages:

acceleration, constant velocity, and deceleration,

though in some cases only one or two stages are

actually recorded. The position of the flow front, as

a function of time, in the three stages can be described

by polynomials of degree 2, degree 1, and degree 2,

respectively. We refer to the slope of the second

regime as the bexpansion velocityQ. Here, we deter-

mine the expansion velocity using at least three data

points that maximize the velocity. Table 1 lists the
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measured expansion velocity. Next we calculate the

expansion velocity theoretically.

Assuming that the gas inside the bubble expands

adiabatically, and that the change of the volumetric

enthalpy caused by a decompression, DĤmod, is trans-

formed to kinetic energy, the expansion velocity me
can be written as (see Appendix A).

DĤHmod ¼ /d
cPg � Po

c � 1
1� cPo

cPg � Po

�

� 2� 1

c

� �
Pg

Po

� �1=c

� 1

( )#
ð1Þ

me ¼
2DĤHmod

qf

� �1=2

; ð2Þ

where c =1.4 is the isentropic exponent, Po is the

outside pressure, Pg is the gas pressure inside of

bubbles, and qf is the density of the bubbly fluid

(see Table 2). Here, DĤmod is determined by Pg, Po,

and /, so that the expansion velocity is determined

solely by Pg, Po, and /. When PgHPo, DĤmod ~

/cPg / (c�1). This formulation and these assumptions

are similar to those previously used to estimate pyr-

oclastic flow velocities [24] and steamblast eruptions
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Fig. 6. Correlation between measured and calculated expansion

velocities. Blue, green, red, pink, and light-blue symbols show

cases with fragmentation, partial rupture, detachment, deformation,

and bnothing,Q respectively. Attached numbers a–d, and aV corre-
spond to experiments shown in Figs. 4 and 5. Crosses, circles, and

asterisks indicate concentrations of xanthan gum solutions of 0.1,

0.3, and 0.5 wt.%, respectively. Vertical axis on the right shows the

calculated shear rate me /R1,where R1~0.13 mm is the averaged

bubble radius for a concentration of 0.1 wt.%. Radius for 0.1

wt.% is the largest value for the three different solutions, so this

shear rate represents a minimum estimate.
[25]. Fig. 6 shows a good correlation between mea-

sured and calculated velocities.

Fig. 6 also indicates that the expansion velocity

does not depend on viscosity, because this figure

includes three different fluids whose viscosities vary

more than one order of magnitude at the same shear

rate. If the shear rate caused by expansion exceeds the

inverse relaxation time of the bubbly fluid, 1 / tr, the

fluid behaves as an elastic material, and the expansion

velocity is determined by the potential energy. Indeed,

in our experiments the shear rate calculated from the

measured expansion velocity is faster than 1 / tr~1 s
�1.

The vertical axis on the right-hand side of Fig. 6 is the

calculated shear rate me /R1, where R1~ 0.13 mm is the

averaged bubble radius. We thus conclude that the

fluids behave as elastic materials over the time scales

that bubbles expand and films rupture (Figs. 4 and 5)

so that DĤmod determines the expansion velocity.

Because DĤmod determines the expansion velocity,

we refer to this quantity as potential energy.

4.2. Response patterns

Fig. 7 is the regime diagram for the response of our

bubbly fluids. Next we explain the physical processes

that result in the five distinct expansion styles. Fig. 8a

illustrates schematically the processes we describe.

When the rarefaction wave arrives at the first line

of bubbles, a pressure difference is generated between

bubbles and the atmosphere. This deforms bubble

walls and the potential energy DĤmod is transformed

to kinetic energy, qfme
2 / 2. Because the fluid is initially

confined by the tube, the bubbly fluid has a velocity

only in the vertical direction. Thus, the column of the

bubbly fluid is stretched vertically. The shape reflects

the Poisson’s ratio, and the fluid can potentially

bdetachQ from the tube wall as observed in Fig. 4c.

The kinetic energy, qfme
2 / 2, is used to deform each

bubble and hence to stretch the whole fluid, and is

stored as elastic energy.

If the bubble walls rupture, however, the bubble

walls release elastic energy and expand radially.

Thus, the bubbly fluid can expand both in the vertical

and radial directions and does not detach from the

tube wall. If only thin films around bubbles rupture

but the thick plateau borders that exist at the points of

contact between three or more bubbles remain, the

texture resembles a net. In addition, film rupture
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leads to thickening of the plateau borders [26] and

thus enhances the net texture. We suggest that bpartial
ruptureQ observed in Fig. 4b is the result of this

process.

The threshold for partial rupture can be calculated

by assuming that, bubble walls break when the strain

exceeds a critical value. The tangential component of

the strain tensor, uhh, of a bubble wall is given by Eq.

(B.2) (Appendix B). Here uhh has a minimum at

r=R1, so that if uhh(r=R1) exceeds a critical strain

uhhc, the bubble wall can break at any radius. This

criterion is written as

� Po � Pg

� �
E 1� /ð Þ 1� 2rð Þ þ 1þ r

2

	 

Nuhhc: ð3Þ

This threshold is denoted in Fig. 7 by the green line

where r =0.5 and Euhhc=78 k Pa, and does appear to

separate partial rupture from detachment. Small dif-

ferences from the prediction may be attributed to the

variation of bubble radii.

After the bubble walls break and the texture resem-

bling a net expands, the liquid’s elasticity reduces the

expansion velocity. Because the kinetic energy of the

fluid causes the fluid to deform, and velocity

decreases with height in the column of fluid, the
relaxation of elastic stresses draws fluid to the top of

the fluid column, as observed in Fig. 4b. The elasticity

also acts to detach fluid from the tube wall.

If the axial strain of the plateau borders e exceeds a

critical value after the bubble walls break, the plateau

borders can also fragment. The texture termed

bfragmentationQ in Fig. 4a is the result of this process.

The maximum elastic energy for the plateau borders

should reflect the initial potential energy DĤmod. The

criteria for the fragmentation of a plateau border can

thus be written as

DĤHmodNEe
2
c ð4Þ

where E is Young’s modulus and ec is the critical

axial strain for the fragmentation. The solid blue line

in Fig. 7 shows a constant potential energy, DĤmod=

30 k J m�3, and separates fragmentation from partial

rupture.

In the case of detachment, fragmentation of the

stretched bubbly fluid is not observed—in contrast

to the scenario shown in Fig. 8. However, fragmenta-

tion as illustrated in Fig. 8 might still be possible if the

fluid has another driving force for expansion. Lane et

al. [27] shows fragmentation with detachment where

bubbles grow by the exsolution of organic solvent

(volatile) in gum rosin. In their case, the driving

force of the expansion is exsolution of the volatile

component because the fluid should almost be bubble-

free prior to expansion. Instead of initially existing

bubbles, exsolution and nucleation create new bub-

bles. In this case, the pressure difference between the

inside and outside of bubbles should be small so that

each bubble would not experience sufficient strain to

break. The stretched fluid could thus fragment without

bubble-wall breakage.

Deformation and bnothingQ are observed for smal-

ler vesicularity and smaller overpressure. Dashed and

dotted lines in Fig. 7 show constant potential energies

of DĤmod=5 k and 2 k J m�3, and are assumed to be

representative of reasonable thresholds. The agree-

ment with observations suggests that the threshold

for deformation and bnothingQ is also described by a

constant potential energy. To detach the fluid from the

tube wall, a finite potential energy may be required.

To deform the surface of the fluid, another finite

potential energy may be required. When the fluid

fails to detach from the tube wall, viscous drag decele-
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rates the fluid. Indeed, the measured expansion velo-

city for the deformation and bnothingQ are lower than

predicted from Eq. (2) as shown in Fig. 6.

We thus conclude that the style of expansion de-

pends on the parts of the fluids that break or frag-

ment. To break a bubbly fluid into many discrete

pieces, both bubble walls and plateau borders should

fragment. The thresholds for these two processes, at

least in our experiments, are governed by the strain

energy.
5. Implications for a volcanic eruption

We now apply our results to volcanic eruptions.

First, we need to determine whether shear rates me /R1

exceed the inverse relaxation time 1 / tr in volcanic
eruptions: if me /R1NO(1 / tr),magma will behave as an

elastic material, and we can calculate the eruption

velocity using Eq. (2). The relaxation times of natural

magmas depend on composition and temperature, and

for rhyolite at 800 8C, tr=O(101) s [9]. For the shear

rate to exceed me /R1N10
�1 s�1, a combination of

R1 b0.01 m and meN10
�3 m s�1 is sufficient. A

bubble radius of 0.01 m is quite large [28], and the

expansion velocity can exceed 10�3 m s�1 with slight

overpressure even at very low vesicularity (Fig. 9).

Thus, when rapid decompression occurs and bubbles

are present in the magma, the magma should respond

as an elastic material, and we can calculate the expan-

sion velocity by Eq. (2).

Next, we need to discuss whether the fragmentation

thresholds determined in our experiments are relevant

for magma fragmentation. Spieler et al. [20] have
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found that the critical pressure for fragmentation is

Pg=0.995 // MPa for a wide range of magmas at 850

8C. This means that a constant potential energy, which

is a product of Pg/, determines the fragmentation

threshold. The calculated critical potential energy for

the magma fragmentation is 2.5 MJ m�3, and this can

deform a magma with E =O(109) Pa to strains

e =O(10�2�10�1). Thus, the magma fragmentation

threshold is consistent with our experimental results,

and we hereafter assume we can apply our results to

volcanic eruptions.

We adopt the results of Spieler et al. [20] for the

fragmentation threshold and show the threshold in

Fig. 9. Magmas with / N0.2 can fragment at PgN5

MPa, and the eruption velocity should be greater than

50 m s�1 as seen in Fig. 9. This is similar to the

maximum blast velocity observed during the 1980

eruption of Mount St. Helens [29].

The threshold for breaking bubble walls in experi-

ments is well-described by Eq. (3). For magmas we do

not know the critical strain for breaking bubble walls,

uhhc, so we cannot estimate the region for partial

rupture.

In the region below the gray area in Fig. 9,

detachment might occur. Unfortunately, for several

reasons we do not have sufficient information to

estimate the expansion patterns and thresholds bet-
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cularity / using Eq. (2). We assume that the density of bubble-free

magma is 2200 kg m�3, Po is atmospheric pressure 105 Pa, and

c =1.4.
ween bdetachmentQ, bdeformationQ, and bnothingQ.
First, because the shape of the deformed magma

reflects the Poisson’s ratio, it is not clear whether

the detachment would occur in real magma. Second,

volcanic conduits are deformable, unlike our shock

tube, so that conduits may contract in response to the

radial deformation of magma. Finally, the region of

parameter space separating bdeformationQ from

detachment may be quite small, and the range of

parameters over which detachment will occur could

also be quite narrow.

Here, we have not taken into account the effects of

bubble nucleation and diffusive growth of bubbles

during rapid decompression to explain the expansion

velocity and style. We anticipate both effects to be of

secondary importance for determining the initial

expansion velocity and style during rapid decompres-

sion when the magma has a sufficiently high initial

vesicularity for three reasons. First, because the radii

of the newly nucleated bubbles are small [28], the

contribution to the vesicularity which causes rapid

bubble expansion is limited. Second, diffusive growth

of the newly nucleated bubbles is slower than the

expansion of the preexisting bubbles owing to the

slow diffusion in high-viscosity magmas [13,15,

16,30]. Finally, the pressure difference between the

inside and outside of newly nucleated bubbles, which

provides the driving force of breaking bubble walls,

will be smaller than that of preexisting bubbles. On

the other hand, the expansion of preexisting bubbles

ends immediately after decompression, but actual

explosive volcanic eruptions can continue for many

hours. Slow diffusive growth of newly nucleated

bubbles is probably very important for sustained

eruptions.

At active volcanoes, rapid decompression can

occur following the sudden removal of a dome

(plug) on the vent. If the plug is removed after

the magma has sufficient vesicularity and overpres-

sure, the magma may have a large enough initial

potential energy for rapid expansion. If the potential

energy exceeds the critical value for fragmentation,

the magma fragments. Rapid expansion of gas

released from broken bubbles will eject magmatic

debris at high rates — the eruption style becomes

explosive.

However, if the plug is removed when the

magma has lower vesicularity and overpressure,
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the potential energy does not exceed the fragmenta-

tion threshold and the eruption will not become

explosive. As shown in Fig. 5b, decompression can

elongate bubbles and form textures similar to those

found in real magma clasts with high-permeability

[31,32]. If this type of decompression occurs repeat-

edly, the magma may be able to lose volatiles (degas)

to the surrounding rock or atmosphere. It may then

erupt effusively to form a lava dome with high perme-

ability pumice. The permeability of magma has been

considered to be an important factor in determining

the eruption style [32–35]. Our experiments, for

example the one shown in Fig. 5b, illustrate how

bubble connections may develop as a result of

decompression.

Our experiments and scaling indicate that the

potential energy, which depends on /, Pg, and Po

before rapid decompression, will determine the erup-

tion velocity and style that follows rapid decompres-

sion. When Pg represents lithostatic pressure, the

potential energy is dominated by vesicularity. If the

depth distribution of magma vesicularity before erup-

tion can be estimated by seismological methods or

other remote observations, the hazard posed by

magma bodies can be inferred.
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Appendix A. Comparison of models of the

expansion velocity

Several scaling laws have been proposed to

explain the expansion velocity. In this Appendix,

we compare these models with the experimental

results.

Fink and Kieffer [24] and Mastin [25] estimated

the blast velocity assuming isentropic expansion of

the compressed gas,

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĤH o=qg

q
; ðA:1Þ
where DĤo is the volumetric enthalpy at the point at

which me=0 (reservoir enthalpy), and the hat indicates

values per unit volume. Here, the volumetric enthalpy

change of a perfect gas caused by the decompression

from Pg to Po is given by [36].

DĤH ¼ cPg

c � 1
1� Po

Pg

� � c�1ð Þ=c
" #

: ðA:2Þ

We have modified this model to explain the

experimental results with liquid gas mixtures, assum-

ing 1) the enthalpy change for the liquid phase is

negligible and that the enthalpy change of the gas

phase causes expansion of the bubbly fluid, 2) velo-

city equilibrium between gas and liquid. To obtain

Eq. (A.1), the compressed gas should be released in a

perfect vacuum. In our experiments, however, the

inside of the low-pressure tank is not a perfect

vacuum, and we need to account for the compression

of the gas inside the low-pressure tank. Assuming the

isentropic compression, the required energy DŴ is

computed by

DŴW ¼
Z Po

Pg

PoV̂V ðA:3Þ

¼ Po

�
Pg

Po

�1=c

� 1

" #
: ðA:4Þ
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These equations are for the gas phase. When the

volume fraction of the gas phase is /, the expansion

velocity is calculated as

vH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/ DĤH � DŴW
� �

=qf

q
ðA:5Þ

¼ 2/
qf

cPg � Po

c � 1

�
1� cPo

cPg � Po

�

�
	�

2� 1

c

��
Pg

Po

�1=c

� 1


��1=2

: ðA:6Þ

We will refer to this model as bmodel HQ. Here we
define a new parameter DĤmod as

DĤHmod ¼ / DĤH � DŴW
� �

: ðA:7Þ

Alidibirov [7] has estimated the blast velocity

with the assumption that the internal energy of

gases inside the bubbles is transformed to kinetic

energy. The change of the internal energy of com-

pressed gas, DÛ, resulting from decompression can

be written as

DÛU ¼ Pg

c � 1
1� Po

Pg

� � c�1ð Þ=c
" #

: ðA:8Þ

We have also modified this model, in the manner as

Eqs. (A.3)–(A.5), to be applicable to our experiments:

vU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/ DÛU � DŴW
� �

=qf

q
ðA:9Þ

¼ 2/
qf

DP

c � 1
1� c

Po

DP

Pg

Po

� �1=c

� 1

( )" # !1=2

:

ðA:10Þ

We will refer to this model as bmodel UQ.
Cagnoli et al. [37] explained the expansion velocity

of powder–gas two-phase flow by assuming the iso-

thermal expansion of mixture. This velocity is esti-

mated as

vCT ¼ �
ffiffiffiffiffiffiffiffiffi
Pg/
qf

s
ln

Po

Pg

�
:

�
ðA:11Þ

Eq. (A.11) is similar to the isothermal expansion of

bubbly magma derived by Turcotte et al. [38]. We will

refer to this model as bmodel CTQ.
The vesicularity dependence of the expansion velo-

city of these models is the same. However, the pres-

sure dependence differs. Fig. A.1 shows that

vHc
ffiffiffi
c

p
vU. This can be easily understood by consid-

ering the case when PgHPo in Eqs. (A.6) and (A.10).

In contrast, mCT is quite different from mH and mU at

large pressure differences. Assuming that there is

constant temperature expansion, rather than adiabatic

expansion, means that the gas receives some addi-

tional energy, DQ̂, from liquid phase to maintain a

constant gas temperature. The contribution of DQ̂

increases as DP becomes larger. This difference

becomes important when applied to a real volcanic

eruption because the expected overpressure for the

volcanic eruption is large. Thus, the true test

of models should be done at large pressure

differences.

We plot three of these calculated velocities with

measured velocities in Fig. A.2 H1, U1, CT1. Fig.

A.2 H1 shows the best agreement with measured

velocities. The misfits are distributed around the

predictions. There is no dependence of misfits on

DP and / (Fig. A.2 H2, H3). Fig. A.2 U1 explains

the trends of the velocity, but most of measured

velocities exceed the predictions. There is no de-

pendence of misfits on DP and /; however, most

of misfits are distributed above the line Dm =0.
This result indicates that the expansion velocity is

described by mH and mU~mH /
ffiffiffi
c

p
. Fig. A.2 CT1

shows that this model cannot explain the experi-

mental results when the expansion velocity is fast.

In addition, Fig. A.2 CT2 shows that the misfits

becomes larger when the pressure difference

becomes larger. This represents the trend shown

in Fig. A.1. We thus conclude that model H is ap-

propriate to explain the expansion velocity of the

bubbly fluid by a rapid decompression and that

the heat exchange between liquid and gas phase

is not rapid enough in our experiments to influence

expansion.
Appendix B. Deformation of the bubble wall

Here we calculate the strain of the bubble wall.

First, we consider an isolated bubble with inner R1

and outer R2 radii which has been relaxed at a pres-

sure Pg, and the outside pressure suddenly changes to
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Po. Using spherical polar coordinates with the origin

at the center of the sphere (Fig. 8b), the displacement

vector u is everywhere radial, and a function of r

alone. Thus curl u=0, and the equation of equili-

brium becomes grad div d u=0 [39]. Radial displace-

ment u=ar+b / r2 can satisfy this equation. The radial
urr and tangential uhh components of the strain tensor

are urr=a�2b / r3, uhh=a+b/ r3, and radial stress rrr

is calculated by

rrr ¼ E

1þ rð Þ 1� 2rð Þ 1� rð Þurr þ 2ruhhf g; ðB:1Þ
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where r is Poisson’s ratio. Using the boundary con-

ditions rrr(r=R1)=0, rrr(r=R2)=� (Po�Pg), uhh

becomes

uhh ¼
� Po � Pg

� �
R3
2

E R3
2 � R3

1

� � 1� 2rð Þ þ 1þ rð Þ R3
1

2r3

	 

:

ðB:2Þ

Assuming the vesicularity / is equal to (R1 /R2)
3,

uhh at R1 is

uhh r ¼ R1ð Þ¼
� Po � Pg

� �
E 1� /ð Þ 1� 2rð Þ þ 1

2
1þ rð Þ

	 

:

ðB:3Þ
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