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The M2M project will sample for the first time upper mantle peridotites that in the near geological past resided 

in the convecting mantle, and recently (~20 to 100 Myrs) underwent partial melting at a fast-spreading mid-ocean 
ridge. This will be achieved by drilling through intact fast-spread oceanic crust, and ~500m into the mantle 
lithosphere. This first in-situ sampling of fresh upper mantle rocks will provide hitherto unattainable information 
on the chemical and isotopic composition (including fluid mobile elements K, U, C, S, H2O, noble gases), 
physico-chemical conditions (e.g., fO2, fS), seismic velocities and magnetic signatures, physical properties 
deformation and rheology, and the scales of chemical and physical heterogeneity of the uppermost mantle. This 
information is essential to understand the formation and evolution of Earth, its internal heat budget, planetary 
differentiation and reservoir mixing by mantle convection, mantle melting, and melt focusing and transport at 
mid-ocean ridges.  

On the descent to the mantle, the ultradeep hole (MoHole) will sample fast spreading ocean crust, and make the 
first in situ observations of the geological nature of the Mohorovičić Discontinuity (Moho), the uppermost primary 
seismic boundary in the Earth, assumed to be the crust-mantle boundary. Fast spreading ocean crust is targeted 
because it exhibits relatively uniform bathymetry and seismic structure, and is the great majority of crust recycled 
back into the mantle by subduction during the past 200 Myrs. Sampling a section of intact oceanic crust will test 
models of magmatic accretion at mid-ocean ridges, quantify the geometry and vigor of hydrothermal cooling and 
geochemical exchanges with the oceans, identify the limits of life in the sub-seafloor biosphere and its functions, 
and ground-truth remote geophysical observations. 

This proposal provides the scientific justification for drilling a >6000 m borehole to the mantle. The rationale has 
been developed by six workshops since 2006, and summarizes the scientific state-of-the-art, and the current vision 
for engineering and technology development, and operations. M2M directly addresses Challenges 6, 8, 9 and 10 of 
the 2013-2023 IODP Science Plan. A site for mantle drilling has yet to be selected, but three potential target 
regions await additional site surveys. 

Drilling into the mantle will be the most ambitious undertaking ever achieved by the geoscience community and 
must engage the full spectrum of scientific expertise. Observations of pristine upper mantle will transform our 
understanding of the evolution of our planet and challenge the fundamental paradigms that are the foundations of 
Earth science. 
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Scientific Objectives: (250 words or less) 
 

The M2M project echoes long-term goals of Earth scientists since the late 1950's, to understand the oceanic 
lithosphere. With a MoHole, we will address first-order questions about the composition and structure of the Earth's 
convecting mantle, the geological nature of the Moho, the formation and evolution of oceanic crust, and the deep 
limits of life. Specific objectives of M2M are to: 
• Determine the in-situ composition, structure and physical properties of the uppermost mantle, and the physics and 
chemistry of mantle melting and melt migration processes, 
• Determine the scales of physical and chemical heterogeneity of the uppermost mantle, 
• Determine the geological meaning of the Moho in fast-spread lithosphere, 
• Determine the bulk composition of the ocean crust to establish the relationship between lavas at the seafloor and the 
melts that separated from their mantle sources, 
• Determine the mode of magmatic accretion at fast spreading ridges, 
• Understand the extent and intensity of hydrothermal exchange between ocean crust and seawater, and estimate the 
chemical flux returned to the mantle by subduction, 
• Determine the contribution of the lower ocean crust and upper mantle to global geochemical cycles, including 
carbon and water, 
• Establish the limits, and controlling factors of life in the ocean lithosphere. 
• Calibrate regional seismic measurements against core samples and borehole experiments, including long-term 
geophysical and microbiological monitoring, 
• Understand the origin of marine magnetic anomalies and quantify the contribution of lower crustal rocks to the 
magnetic signature of the ocean crust. 
 

 
Please describe below any non-standard measurements technology needed to achieve the proposed scientific objectives.  

Continuous mud circulation (water depth > 3500 m); coring, logging, and fluid/gas sampling in a high temperature 
(≥ 200°C) environment; specialized drill bits for abrasive, hard, hot rocks; specialized drill string with high tensile 
strength; low weight, special drilling mud for use at high temperature; new casing and cementing materials and 
strategies; … 
 

 
Proposed Sites: 

Penetration (m) 
Site Name Position Water 

Depth (m) Sed Bsm Total 
Brief Site-specific Objectives 

 
Cocos Plate 
 
 
Off 
Southern/Baja 
California 
 
NE Hawaiian 
Arch 

 
6.7-8.7°N 
89.5-91.9°W 
 
20-33°N 
120-127°W 
 
 
22.9-23.9°N 
154.5-155.8°W 
 

 
3400-3650 
 
 
Mostly 
4000-4500 
 
 
4050-4500 

 
250-300 
 
 
80-130 
 
 
 
~200 

 
>6000 
 
 
>6000 
 
 
 
>6000 

 
>6000 
 
 
>6000 
 
 
 
>6000 

 
 
 
 
MoHole site is yet to be 
determined, and other 
options may be considered 
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MOHOLE TO THE MANTLE (M2M) 
 

1. PRIMARY MOTIVATION FOR A MOHOLE TO THE MANTLE 

This proposal presents the scientific justification for in-situ sampling and observations of 

the Earth’s uppermost mantle by drilling an ultra-deep hole (MoHole) through intact oceanic 

crust formed at a fast spreading rate, penetrating the Mohorovičić Discontinuity (Moho), and 

hundreds of meters into fresh mantle peridotites. Target rocks include the uppermost oceanic 

mantle lithosphere that, in the past 20 to 100 Myr, was within the convecting mantle, and 

underwent partial melting at a mid-ocean ridge to form the overlying crust. Although 

deformed and recrystallized, these residual mantle peridotites have remained largely solid for 

more than 4 billion years. Thus the convective mantle (Fig. 1), fossilized in the oceanic 

lithosphere (Fig. 2), is intrinsically different from the igneous crust, crystallized from magma. 

During the descent to the upper mantle, the MoHole to the Mantle (M2M) project will 

provide hitherto unobtainable information on the magmatic accretion of the oceanic crust, the 

related frontier of deep seawater hydrothermal circulation, the limits of microbial life, and the 

first geological calibration of the Moho, the uppermost primary seismic boundary in our 

planet that separates the buoyant crust from the mantle. 

To date, the elusive frontier at the Moho, and the enormous mantle domain beneath, have 

been symbolic, unattainable goals. However, with the riser-drilling vessel Chikyu, the 

aspirations of generations of Earth scientists to drill completely through the oceanic crust, and 

into the upper mantle, ~6 km below seafloor, have moved into the realm of technical 

feasibility. 

 

1.1. Mantle composition and heterogeneity 
The Mantle is the largest part of our differentiated planet, extending from the base of the 

crust (~5-70 km) to the outer core 2890 km below (Fig. 1). The Fe-Ni alloys that form the 

inner and outer core segregated from or passed through the mantle early in Earth’s history 

(e.g., Rudge et al., 2010, Wood and Halliday, 2010; Wood, 2011). With the exception of late 

cosmic additions (e.g., Kimura et al., 1974; Chou, 1978), virtually all the materials that make 

up the oceanic and continental crust have been generated over the eons from the partial 

melting and degassing of the mantle through the dynamic interplay between the convecting 

mantle and the overlying tectonic plates.  
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The mantle regulates how the Earth looses its heat and how thermal energy is used to drive 

plate tectonics. How much of the heat released at the surface is primordial, produced in the 

mantle, or released from the core is an open debate (e.g., Korenaga, 2008). This question is 

directly tied to that of mantle heterogeneity. Chemical and isotopic measurements of ocean 

floor basalts have long been used as evidence for large-scale mantle heterogeneity. For 

example, 3He anomalies suggest the preservation of primordial components within the mantle. 

However, there is no agreement on the nature and extent of compositional heterogeneity and 

its effect on mantle convection style (e.g., Nakagawa et al., 2004; Labrosse et al., 2007; 

Brandenburg et al. 2008; Simmons et al. 2009). The geochemical community was long 

satisfied by the concept of a well-mixed upper mantle depleted in crust-forming elements, and 

a deeper heterogeneous and more primitive lower mantle; textbook illustrations are 

commonly based on this view. However, while geochemical arguments (including new 

techniques; e.g., 142Nd and 182W anomalies), favor large-scale reservoirs that remain 

chemically isolated for long times, some possibly dating back to the formation of the Earth 

(e.g., Caro, 2011; Touboul et al., 2012), large-scale geophysical imaging (e.g., Kárason & van 

der Hilst, 2000; Ritsema et al., 2011; Fig. 1) and modeling provide strong evidence for a 

largely well-mixed mantle (summary in van Keken et al., 2002). Furthermore, the 

mechanisms for the addition of volatile elements to the Earth remain hotly debated (e.g., 

Albarède, 2009; Wood et al., 2010). 

One of the principal reasons why the scale of mantle heterogeneity and the nature of 

mantle volatile contents are still debated is that we have no fresh, in-situ samples of the 

convecting mantle. This is not well known because peridotite samples are not rare. However, 

our mantle samples are limited to highly altered, tectonically exposed rocks on the seafloor, 

similarly altered peridotites in ophiolites (with an unknown genetic relationship to sub-

oceanic mantle), xenoliths from the lithosphere (modified by host magmas), and continental 

peridotite massifs representative of material which has been long isolated from the convecting 

mantle. In addition to studies of these inadequate samples, the composition of the convecting 

mantle is estimated from the compositions of basaltic magmas, or inferred from cosmic 

abundances and assumptions regarding the partitioning of elements into the distant core. A 

few kilograms of fresh residual peridotite from beneath intact oceanic crust would provide a 

wealth of new information on the Earth's dynamics and evolution, comparable to the treasure 

trove obtained from the Apollo lunar samples. This is most apparent when considering the 

volatile element contents of the convecting mantle, which are completely obliterated by 

alteration processes in dredged abyssal peridotites, or by interaction with melt in xenoliths. 
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Water and carbon are two of the most important chemical species critical for life and the 

environment on Earth, but the contribution of the mantle, arguably the largest Earth's 

reservoir of these components, to the global water and carbon budgets remains totally 

unconstrained in the absence of samples (e.g., Hazen et al., 2012; Hirschmann and Kohlstedt, 

2012). Water recycled into the mantle at subduction zones is hypothesized to reduce its 

viscosity, allowing continuous mantle convection and plate tectonics, providing the key 

reason why Earth is different from the other terrestrial planets in the solar system (e.g., 

Venus), and is an essential ingredient for the formation of arcs and continents. Primordial and 

surface derived carbon can form diamonds in the deep mantle, which may be brought back to 

the shallow mantle encapsulated in chrome spinel, as found in some ophiolites (Yang et al., 

2007).   

1.2. Mantle melting processes 
Melt inclusions trapped in single minerals within extruded lavas show a remarkable 

variation in composition, suggesting a wide range of sources. Dredging of serpentinized 

peridotite at slow-spreading ridges provides hints of significant heterogeneity but the scale of 

these variations in isotopic composition remains unconstrained due to lack of context (e.g., 

Warren et al., 2009; Stracke et al., 2011), substantial alteration effects on key tracers such as 
87Sr/86Sr and 3He/4He (e.g., Snow et al., 1994; Delacour et al., 2008), and complete resetting of 

stable sulfur, carbon, and oxygen isotope ratios (e.g., Barnes et al., 2009; Kelemen et al., 

2011). To fully understand the processes that generate crust-forming magmas at mid-ocean 

ridges, we need to know the composition of the source mantle, together with the bulk 

composition of the overlying crust formed by these melts. Access to mantle material will also 

allow us to constrain models of partial melting, melt impregnation, and melt transport (e.g., 

how is it focused from a broad melting region to a narrow zone of crustal accretion beneath 

mid-ocean ridges?). 

1.3. The Moho and the crust above it 
The Moho is a seismically imaged, primary acoustic interface that represents the transition 

between the mantle and the overlying crust. Whereas oceanic crust is formed by a variety of 

igneous and metamorphic processes, and has a relatively low seismic velocity, the oceanic 

mantle is largely composed of residual peridotite with higher seismic velocity. However, 

questions about the relationship between the seismic boundary and the geological crust-

mantle transition remain unanswered in the absence of in-situ samples. In addition to the 

mysteries surrounding the Moho, there are also major gaps in knowledge about the lower 
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crust itself. How does it form, and how does it exchange heat and chemical components with 

seawater? The formation, evolution and recycling of oceanic lithosphere is the dominant 

process in the chemical differentiation and physical evolution of our planet. This process 

encompasses the transfer (from and to the Earth's mantle) of material (including water and 

CO2) and energy, through interactions between the mantle and the crust, and between the 

crust, ocean, and atmosphere. Independent of sunlight, the evolving ocean crust supports life 

in unique subsurface and seafloor habitats that may resemble the conditions that enabled the 

origin of life. Upon its formation at mid-ocean ridges, the oceanic crust records geomagnetic 

field variability, providing the basis for geomagnetic polarity timescales, plate 

reconstructions, and estimates of plate motions. 

2. ROAD TO THE MOHO 

Sampling a complete section of crust and shallow mantle was the original motivation for 

scientific ocean drilling. M2M will be the culmination of a decades-old quest by IODP, ODP 

and DSDP, since the "American Miscellaneous Society" first proposed "Project Mohole" in 

1957 (e.g., Bascom, 1961; Crombie, 1964; Teagle and Ildefonse, 2011). The goal was and 

remains to understand the composition, structure, and evolution of the oceanic lithosphere 

through deep scientific drilling, as outlined in the IODP Science Plans for 2003-2013 and 

2013-2023. This goal has been a core component of numerous planning documents since the 

inception of scientific ocean drilling (e.g., Murray et al., 2002; Teagle et al., 2004). The wide 

mantle dynamics, mid-ocean ridge and oceanic lithosphere community has discussed and 

articulated the scientific objectives and operational considerations presented herein via the 

IODP sponsored workshops "Mission Moho" (Portland, 2006; Christie et al., 2006; Ildefonse 

et al., 2007a), "Melting, Magma, Fluids and Life" (Southampton, 2009; Teagle et al., 2009), 

"INVEST" (Bremen, 2009; Bach et al., 2010; Ravelo et al., 2010), "The MoHole, A Crustal 

Journey and Mantle Quest" (Kanazawa, 2010; Ildefonse et al., 2010a, 2010b), and "Mantle 

Frontier" (Washington DC, 2010; Workshop Report Writing Group, 2011). A co-proponent 

meeting (mohole.org) was held in Tokyo in February 2012. 

Since the early 70’s when the “Penrose” layered model for the ocean crust (Penrose 

Conference Participants, 1972) was widely accepted, investigations of the oceanic crust by 

scientific ocean drilling (Fig. 3), marine geological and geophysical techniques, 

complemented by ophiolite studies, have expanded our understanding of the architecture of 

the ocean crust (e.g., Teagle et al., 2004; Dick et al., 2006; Ildefonse et al., 2007b). 



 

 5 

Away from transform faults, ocean crust formed at fast spreading rates exhibits relatively 

uniform bathymetry and seismic stratigraphy (e.g., Canales et al., 1998, 2003; Kodaira et al., 

2010). At the ridge axis, continuous crustal seismic reflectors interpreted to be high level, 

axial melt lenses (e.g., Detrick et al., 1987) are imaged overlying axial low-velocity zones that 

extend down to sub-Moho levels (e.g., Harding et al., 1989; Sinton & Detrick, 1992; Dunn et 

al., 2000). This suggests that ocean crust formed at fast spreading rates (>80 mm/yr full rate) 

is layered and relatively homogeneous (Fig. 4). Although only 20% of modern ridges are fast-

spreading, more than 50% of the present day seafloor (~30% of Earth’s surface), and the great 

majority of crust subducted into the mantle during the past 200 Myr was produced at fast 

spreading ridges. Because of the relatively uniform architecture of fast-spread lithosphere, 

information at one drill site can be extrapolated to a significant portion of Earth’s surface with 

some confidence. Importantly, we have well developed theoretical models of contrasting 

styles of magmatic accretion at intermediate to fast-spreading ridges, which can be tested 

using samples recovered from cored sections of ocean basement. Therefore, the goal of M2M 

is to sample, as continuously as feasible, the entire crust, Moho and shallow mantle, in 

oceanic lithosphere formed at a fast-spreading rate. Scientific and technological progress 

towards this goal will require additional site surveys, and effective scoping activity to 

organize the appropriate technical development and choices.  

Ocean crust formed at slow to ultra-slow rates (<40 mm/yr) is heterogeneous, both along 

and across axis, particularly towards the end of ridge segments where the crust is composite 

(Fig. 4; e.g., Karson and Elthon, 1987; Dick, 1989; Cannat 1996; Canales et al., 2000; 

Ildefonse et al., 2007c; Blackman et al., 2011). The great variability of slow-spread 

lithosphere architecture is such that fully characterizing it is beyond the scope of this project. 

Tectonic windows through igneous crust to (altered) residual mantle peridotite are common at 

slow-spreading ridges, and these can be sampled using either conventional or riser 

technology. This has been done in the past, and will continue as a result of other, stand-alone 

drilling proposals. 

3. SCIENTIFIC OBJECTIVES 

By drilling an intact section of ocean crust and upper mantle in fast-spread lithosphere, we 

will address first-order questions about the structure and composition of the Earth's 

convecting mantle, the nature of the Moho, and the formation and evolution of oceanic crust. 

Specific objectives include: 
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• Determine the in-situ composition, structure and physical properties of the uppermost 

mantle, and the physics and chemistry of mantle melting and melt migration processes, 

• Determine the scales of physical and chemical heterogeneity within a ~500 meters long 

section of uppermost mantle, 

• Determine the geological meaning of the Moho in fast-spread lithosphere, 

• Determine the bulk, primary composition of ocean crust to establish the relationship 

between the lavas that erupt at the seafloor and the melts that separated from their mantle 

sources, 

• Determine the mode of magmatic accretion at fast spreading mid-ocean ridges,  

• Understand the extent and intensity of hydrothermal exchange between the ocean crust 

and seawater, and estimate the chemical flux returned to the mantle by subduction, 

• Determine the contribution of the lower ocean crust and upper mantle to global 

geochemical cycles, including carbon and water, 

• Establish the limits, and controlling factors of life in the ocean lithosphere. 

• Calibrate regional seismic measurements against core samples and borehole experiments, 

including vertical seismic profiles, and long-term geophysical and microbiological 

monitoring, 

• Understand the origin of marine magnetic anomalies and quantify the contribution of 

lower crustal rocks to the magnetic signature of the ocean crust. 

Addressing these objectives requires sampling and logging in deep and so-far unexplored 

parts of the ocean lithosphere. Specific science questions and working hypotheses to be tested 

are summarized below.  

3.1. Obtaining the first in-situ samples of Earth’s mantle  
Presently there are NO fresh samples of the convecting mantle, which comprises more than 

98% of the mass and volume of the silicate Earth, and more than 68% of the mass of the 

entire planet, including the core. Xenoliths, brought to the surface in lavas, are (a) dominantly 

derived from old and stable continental lithosphere, rather than the recently convecting mantle 

(Fig. 2), and (b) modified by interaction with host lavas either in the source mantle, or during 

transportation (e.g., Demouchy et al., 2006). Mantle peridotites tectonically exhumed on the 

seafloor have undergone extensive hydrothermal alteration. As a result, hypotheses about 

oxygen fugacity, sulfide composition and proportion, CO2, CH4, graphite, H2O, Li, B, He and 

other noble gas characteristics, and concentrations and isotopic ratios of "fluid mobile" 

elements such as Sr, in the mantle source of Mid-Ocean Ridge Basalts (MORB) are sustained 
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largely by inferences and assertions. The residual mantle part of ocean lithosphere is directly 

derived from the convective mantle at the mid-ocean ridge axis (Fig. 2), and if sampled by 

deep drilling, will provide unique and invaluable information regarding the composition and 

structure of the Earth's interior.  

Concentrations and isotope characteristics of volatile elements in Earth reservoirs are vital 

tracers for global chemical cycling and planetary evolution (e.g., Javoy, 1997; Marty, 2012). 

The volatile contents of pristine mantle are key information to better constrain the evolution 

of primitive Earth. Particularly interesting are the moderately volatile elements (S, Se, Te, …; 

Lorand et al., 2004; Lorand et Alard, 2010). They are basic components of the sulfides that 

also carry siderophile elements, which are used to quantitatively constrain the late veneer 

hypothesis (e.g., Kimura et al., 1974; Chou, 1978; Wanke and Gold, 1981; Albarède, 2009), 

but show a higher variability than previously thought (e.g., Alard et al., 2000). Other 

components, such as heat-producing elements U and Th, and geochemically similar Nb and 

La, may be concentrated on grain boundaries (Niu, 2004; Hiraga et al., 2004, 2007).  

The nature and length scale of heterogeneity in the mantle source of MORBs are 

controversial because mantle source characteristics are largely inferred from lava 

compositions, and/or altered abyssal peridotites (e.g., Alard et al., 2005). Drill core from 

fresh, oceanic upper mantle will place constraints on the extent and scale of spatial variation 

in Sr, Nd, Pb, Hf, and Os isotopic ratios, which has fundamental implications for the most 

basic structure of mantle convection, and the formation and fate of the crust (e.g., Harvey et 

al., 2006; Stracke et al., 2011; Salters et al., 2011).  

Also critical is the determination of the amount and chemical/structural form of carbon 

(hydrocarbons, polymorphs of native carbon) present in the MORB the upper convective 

mantle (e.g., Workshop Report Writing Group, 2011; Hazen et al., 2012). The influence of 

deep carbon reservoirs and fluxes on energy, environment, and climate (e.g., Sleep and 

Zahnle, 2001) remains speculative without direct measurements from the mantle. 

The following example illustrates the extent of the unknown, and the potential impact of 

new discoveries when we obtain fresh samples from the mantle beneath oceanic crust. Figure 

5 illustrates the variability of CO2, Nb and La concentrations in mid-ocean ridge samples. The 

CO2 and Nb contents of lavas (Fig. 5a) indicate that they behave similarly during mantle 

melting and melt transport, as does La (not shown). Figure 5b shows the range of variability 

of Nb and La concentrations in dredged mantle samples. A small part of this variability is due 

to heterogeneity of the mantle source of MORBs. Most of the variation is due to 

refertilization of peridotites by cooling melt crystallizing in the shallow mantle on the flanks 
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of oceanic spreading centers, which adds variable amounts of Nb and La to highly depleted 

residues of melting and melt extraction (e.g., Niu et al., 2004; Godard et al., 2000, 2008; 

Brunelli et al., 2006). Nb and La are essentially immobile during hydrothermal alteration, 

hence their concentrations record the magmatic processes of melt extraction and 

refertilization. Probably, CO2 is also added during refertilization processes, for example as 

fluid inclusions in olivine and other minerals, along with dissolved H within minerals, noble 

gases in fluid inclusions, S in sulfides, and other volatile elements. However, because dredged 

samples are highly altered due to hydrothermal interaction with seawater, the record of 

volatile element refertilization of the shallow mantle is not preserved in these samples. 

Therefore, drilling fresh mantle peridotite beneath intact Pacific ocean crust is essential to 

obtain unaltered samples of refertilized, residual mantle peridotites. Based on the Nb and La 

data shown in Figure 5b, together with the correlation of Nb and CO2 in Figure 5a, there could 

be tens of ppm CO2 in fresh, refertilized shallow mantle samples. If, for the sake of argument, 

there is a refertilized layer in residual oceanic, extending for 10 km beneath the base of the 

crust, and this layer contains 10 ppm CO2, the resulting reservoir would contain ~100 trillion 

tons of CO2, approximately the same mass as all the CO2 in the ocean and atmosphere added 

together. How much CO2 is actually present in the upper mantle beneath ocean crust? We 

simply do not know. 

The grain size and microstructures of unaltered, in-situ residual mantle also remains 

unknown, although they are essential for understanding mantle seismic velocity (e.g., Faul 

and Jackson, 2005; Behn et al., 2009) and anisotropy (e.g, Kodaira et al., 2010), melt 

transport in the mantle (e.g., Spiegelman and Kenyon, 1992), or deformation at decreasing 

temperature caused by corner flow beneath the ridge. Textural and microstructural 

information from the MoHole mantle samples, together with their geochemical composition, 

will provide fundamental constraints on the rheology of shallow lithosphere, and by 

extension, on the nature of the lithosphere-asthenosphere boundary. 

One of the least constrained, fundamental problems in geodynamics is the focusing of 

mantle melt beneath spreading ridges. Melt is produced in tiny pores along grain boundaries 

(e.g., Zhu et al., 2011) within a region of the upper mantle extending to more than 100 km 

depth and laterally for 100's of km on either side of spreading ridges (e.g., Forsyth et al., 

1998). How is this melt extracted and crystallized to form oceanic crust within a few km wide 

region, as seismically imaged along the East Pacific Rise (e.g., Dunn and Forsyth, 2003)? No 

consensus will emerge without the direct evidence that would be provided by drilling in situ 

upper mantle. For example, the upwelling path of partially molten mantle is modeled as either 
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passive, plate-driven flow (e.g., McKenzie, 1967; Sleep, 1975) or active, buoyancy-driven 

flow (e.g., Rabinowicz et al., 1984; Buck and Su, 1989). Away from the ridge axis, both 

models predict flow trajectories nearly horizontal and approximately perpendicular to the 

ridge. However, active upwelling models predict that outward horizontal flow in the upper 

mantle is faster than plate velocity, resulting in an inversion of shear senses (recorded by 

olivine crystallographic preferred orientations) on a vertical section beneath the mantle-crust 

boundary, as has been mapped in the Oman ophiolite (e.g., Nicolas et al., 1994; Ildefonse et 

al., 1995, Michibayashi et al., 2000). If present, this shear sense inversion could be detected in 

drill cores if they are azimuthally oriented (e.g., using core-log integration techniques). 

Another possible indication of active flow would be ridge-ward dipping shear zones, one of 

the possible interpretations of ridge-ward lower crustal dipping reflectors documented in the 

northwest (Reston et al., 1999; Kodaira et al., 2010) and central (Eittreim et al., 1994) Pacific. 

Equally important is to understand the transport of melt through the mantle peridotite. 

Transport may be by diffuse porous flow (e.g., Phipps Morgan, 1987; Spiegelman and 

McKenzie, 1987), by focused flow in high porosity dissolution channels marked by dunites 

(e.g., Kelemen et al., 1995, 1997a), by focused flow in high porosity decompaction channels 

overlain by a permeability barrier at the base of the cold, overlying lithosphere (e.g., Sparks 

and Parmentier, 1991; Rabinowicz and Ceuleneer, 2005), by focused flow in high porosity 

shear zones (e.g., Kelemen & Dick, 1995; Holtzman et al., 2003), via passive transport within 

low permeability, partially molten, buoyant diapirs (e.g., Rabinowicz et al., 1984; Buck and 

Su, 1989), and/or in fractures initiated as a result of overpressure in an interconnected column 

of buoyant melt overlain by a permeability barrier (e.g., Nicolas 1986). All of these processes 

form distinctive geological features, and should be evident in drill core sampling melt 

transport features in mantle peridotites below the Moho.  

 

3.2. What is the geological meaning of the Moho and seismic layers in the crust? 
Understanding the seismic structure of ocean lithosphere requires calibration of remotely 

obtained regional geophysical data against physical properties and petrological measurements 

of geological samples. There is a well-established terminology for seismic layering in fast-

spread oceanic crust (Fig. 6). Layer 1 is locally absent, but present where sediment thickness 

exceeds a few tens of meters, and has Vp <3 km/s. Layer 2 is a band with a high gradient in 

Vp with depth, ranging from ~3-5 to ~6.7 km/s, and Layer 3 has nearly uniform Vp ranging 

from ~6.7 to ~7.1 km/s. The Layer 2/3 boundary is an inflection point, between seismic 
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velocities that increase with depth through Layer 2 and nearly uniform seismic velocity 

through Layer 3. Below Layer 3, in typical Pacific seismic profiles, a sharp transition from ~7 

to ~ 8 km/s occurs within <500 m. By analogy with ophiolites and sparse samples from the 

Pacific, these layers are commonly interpreted as pelagic sediment (Layer 1), lavas and 

fractured, sheeted dikes (Layer 2), intact, sheeted dikes and plutonic rocks (Layer 3), and 

residual mantle peridotite ± ultramafic plutonic rocks (below Layer 3). 

In contrast to the classical interpretation of the Moho as the crust-mantle boundary, Hess 

(1960, 1962) posited that the Moho represents a serpentinization front, i.e., a boundary 

between fresh peridotite and serpentinite. Partially serpentinized peridotites can have densities 

and velocities very similar to (or even lower than) those of fresh gabbros (e.g., Horen et al., 

1996; Carlson and Miller, 1997). At fast-spreading ridges, the depth to the Moho is nearly 

constant along flow lines, making the Hess hypothesis unlikely, as a serpentinization front 

would result in increasing Moho depth with age. The Moho is commonly sharp (Fig. 6), 

which is thought to indicate that it is a lithological contact between gabbro and ultramafic 

rock. However, the Moho may alternatively be more diffuse, with multiple reflectors (e.g., 

Nedimovic et al., 2005), which may account for a more complex transition zone between the 

mantle and the crust, such as seen in parts of the Oman ophiolite (e.g., Arai, 2009). Recent 

active source seismic data in the western Pacific (Kodaira et al., 2010) show high Vp (8.6 

km/s) and strong anisotropy (7%) in the uppermost mantle immediately below sharply imaged 

Moho. However, Vp beneath the oceanic Moho is commonly slightly lower than predicted for 

unaltered peridotite (Shipboard scientific party, 2004). This could indicate ~10% 

serpentinization, small proportions of gabbroic lenses intruding residual peridotite, or the 

presence of ultramafic plutonic rocks below the Moho. Until we drill through the Moho 

beneath fast-spread crust, its petrophysical significance will remain unresolved.  

Seismic velocities in the lower oceanic crust are systematically lower than predicted for 

gabbros (Korenaga et al., 2001; Behn and Kelemen, 2003). This could be related to the 

presence of cracks and/or alteration phases, and/or to our poor knowledge of lower crustal 

composition. Direct sampling of Layer 3 will resolve this issue, and restore our ability to 

interpret Layer 3 velocities in terms of geologically significant rock properties. 

The only site where geological samples have been recovered from intact oceanic crust at 

the depth of the Layer 2/3 seismic boundary is DSDP Hole 504B, where the inflection in 

seismic velocity gradient occurs within the sheeted dikes (Detrick et al., 1994; Alt et al., 

1996; Carlson, 2010) and appears to be controlled by alteration and/or the nature and density 

of cracks in the formation, rather than rock type or grain size. In ODP Hole 1256D, data 
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suggest that the layer 2/3 transition has not been yet reached, but is close to the bottom of the 

hole (Carlson, 2010; Gilbert and Salisbury, 2011), even though the hole extends below the 

first appearance of gabbros at the base of the sheeted dikes (Teagle et al., 2006, 2012).  

Recent high quality seismic surveys in the western Pacific using air-gun, multi-channel 

streamers, and ocean-bottom seismometers indicate some variability of the structure of ocean 

crust and uppermost mantle (Kodaira et al., 2010). The calibration of regional seismic 

measurements against core samples and borehole experiments at a single MoHole site will be 

essential to properly interpret spatial variations of seismic velocities and anisotropy, and/or 

style of Moho reflection. Hence, to fully connect laboratory-derived velocities of discrete 

samples and large-scale structures within the oceanic lithosphere, integration of seismic 

reflection/refraction and drilling data will require detailed wireline sonic logging coupled with 

vertical and multi-ship offset seismic experiments. 

3.3. Bulk composition, and mode(s) of accretion of fast spread crust 
Much of what we know about the composition and temperature of the upper mantle, and 

their global variability, comes from MORB chemistry, which is used to infer the composition 

of the primitive mantle melts (e.g., Klein and Langmuir, 1987, McKenzie and Bickle, 1988). 

The majority of MORBs have Mg# << 70 (where Mg# = 100 x Mg/(Mg + Fe) atomic ratio) 

whereas primitive melts in equilibrium with mantle peridotites should have Mg# ranging from 

~70 to 78 (O'Hara, 1968; Langmuir et al., 1982). Thus, we know that melts undergo partial 

crystallization to produce primitive cumulates, with Mg# ≤ ~90 (equivalent to that of the 

mantle residues of MORB formation) before the remaining melt is extracted as MORB. On 

average, erupted MORBs record about 50% crystallization (e.g., Kelemen et al., 2007). 

Primitive cumulate rocks have only rarely been sampled in the oceans, whereas they should 

be at least as abundant as erupted lavas and sheeted dikes. They must comprise much of 

seismic Layer 3 in fast-spread crust, but their nature, hence the composition of unfractionated 

melts is undetermined in the absence of in-situ samples. Whether fractionation is solely 

responsible for MORB chemistry also remains unquantified. Recent results from fast- and 

slow-spreading ridges (e.g., Rubin and Sinton, 2007; Lissenberg and Dick, 2008; Suhr et al., 

2008; Godard et al., 2009; Drouin et al., 2009, 2010) indicate that significant reactions can 

occur between melts and lower crustal cumulates or mantle rocks. The extent to which melt-

rock interactions bias our current understanding of mantle melting processes cannot be 

assessed without studying the genetically conjugate source mantle rocks, cumulate rocks, and 

extrusive lavas. 
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The nature of the process to form plutonic rocks from subsurface crystallization of melt is 

hotly debated. Our understanding has been limited by the difficulties of geophysically 

imaging and directly sampling the gabbroic lower crust. Consequently, the nature of magma 

chambers beneath mid-ocean ridges and the formation of the lower crust are virtually 

unconstrained. How is melt transported from the mantle through the crust? Where do melts 

fractionate and crystallize? How, and how fast is heat extracted? These fundamental questions 

remain unresolved. 

Multi-channel seismic (MCS) profiles across active intermediate and fast spreading ridges 

commonly reveal bright, low velocity reflectors ~1-2 km below the ridge axis, interpreted to 

be thin (20-100 m thick) axial magma lens (e.g., Morton and Sleep, 1985a; Detrick et al., 

1987; Harding et al., 1989; Singh et al., 1998; Kent et al., 2000). Melt lenses have also been 

imaged within the lower crust and at Moho depth (Nedimovic et al., 2005; Canales et al., 

2009, 2012), and there is ample geophysical evidence for melt accumulation at or near the 

Moho (e.g., Garmany, 1989; Dunn et al., 2000, 2001; Crawford and Webb, 2002; Singh et al., 

2006). These observations, combined with geological and petrological evidence from the 

Oman ophiolite, have led to two competing models of lower crustal accretion at fast-

spreading mid-ocean ridges: 

1. All of the crystallization occurs in a shallow melt lens, and the accumulated crystal 

residues subside in a "gabbro-glacier" to build the lower crust (e.g., Henstock et al., 1993; 

Phipps Morgan and Chen, 1993; Quick and Denlinger, 1993; Fig. 7a). 

2. Crystallization of lower crustal gabbros occurs partly (Boudier et al., 1996) or 

completely in situ (Kelemen et al., 1997b; MacLeod and Yaouancq, 2000) via injection of 

sills. In the end-member "sheeted sill" model (Kelemen et al., 1997b; Fig. 7b), there is no 

material from the upper melt lens in the lower crust. 

The two end-member models have profoundly different implications for the properties of 

the lower crust, including its composition, the distribution of melt, the extent of deformation, 

thermal history, and the geometry, temperature and intensity of hydrothermal fluid-rock 

exchange. Criteria for distinguishing between the two contrasting models are outlined below, 

following tests developed from ophiolite and limited drill core studies. Samples from an intact 

crustal section are essential to test these competing models directly, through systematic 

measurements of compositions, textures, structures, and igneous contacts as a function of 

depth in the lower crustal gabbro section (Fig. 7). 

The igneous stratigraphy and the nature of igneous contacts will be determined, to evaluate 

whether or not the lower crust comprises individual magma bodies that were intruded into the 
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lower crust, and fractionated and crystallized in situ. In the sheeted sill model, the bulk crustal 

composition will be either more evolved upwards or randomly variable, and sub-Moho sills 

(Boudier et al., 1996; Kelemen et al., 1997b; Korenaga and Kelemen, 1997) are predicted. In 

contrast, in the gabbro glacier model there will be no change in bulk crustal composition with 

depth, and sub-Moho sills are not expected. In addition to modal layering, vertical chemical 

variation is observed in ophiolite gabbros (e.g., Pallister and Hopson, 1981; Malpas et al., 

1989; Bédard, 1991; Schouten and Kelemen, 2002), and in plutonic rock sections drilled 

along slow-spreading mid-ocean ridges (e.g., Dick et al. 1991, 2000; Cannat et al., 1995; 

Pedersen et al., 1996; Natland and Dick, 1996; Kelemen et al., 2004, 2007; Blackman et al., 

2006, 2011). The nature of this chemical layering can be used to constrain the size of 

individual crystallization units (Browning, 1984). Magma lenses ≤ 10 m thick crystallized 

layered gabbros in the Troodos ophiolite lower crust (Browning et al., 1989), and in the crust-

mantle transition zone of the Oman ophiolite (Boudier et al., 1996; Korenaga and Kelemen, 

1997).  

The nature of chemical layering can also be used to constrain the mode of melt migration 

from the mantle through the lower crust, to form shallow gabbros, sheeted dikes, and lavas. 

Korenaga and Kelemen (1998) showed how reactive porous flow of melt through chemically 

layered gabbros would disrupt correlations between mineral compositions formed during 

crystal fractionation, and gradually smooth vertical chemical variation via diffusion. The scale 

of measurements undertaken in drill cores is ideal to document such chemical variations. 

If the lower crust is built by the subsidence of material from a high level melt lens in a 

gabbro glacier, increasing strain with depth is predicted (Fig. 7). In contrast, crustal 

construction by successive sill injections will not produce systematic gradients in strain with 

depth. Published data from the Oman ophiolite are too limited to be conclusive, and show 

either no significant downward trend (Yaouancq and MacLeod, 2000), or increasing strain in 

the uppermost part of the upper, foliated gabbro section (Nicolas et al., 2009). The intensity of 

deformation, manifested by crystal shape and lattice preferred orientations, and to some 

extent by magnetic fabrics (Gee et al., 2004) can be readily assessed in drill core samples.  

As magmas cool and crystallize, both the latent heat of crystallization, and the specific heat 

of cooling must be removed. Heat is transferred through the crust by conduction, or the 

advection of melt, solid material and seawater-derived hydrothermal fluids. Hydrothermal 

convection removes heat more rapidly than conduction. The distinct distributions of melt 

intrusion and crystallization with depth implicit in the two end-member models yield different 

distributions of latent heat removal with depth (Fig. 7). Computer simulations that balance the 
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input of magmatic heat from the mantle to the crust with heat sinks provided by conduction, 

advection, and hydrothermal circulation have been used to test crustal accretion models, by 

constraining the input parameters to yield the best fits to geophysical or geological 

observations (Sleep, 1975; Morton and Sleep, 1985b; Henstock et al., 1993; Phipps Morgan 

and Chen, 1993; Maclennan et al., 2004). The gabbro glacier model provides the most 

efficient geometry for hydrothermal heat extraction, as the latent heat and specific heat of 

cooling can be readily advected from the lid of the melt lens (Henstock et al., 1993; Phipps 

Morgan and Chen, 1993). Very slow, deep cooling could be predominantly by conduction in 

gabbro glacier scenarios, but rapid deep cooling via hydrothermal convection cannot be ruled 

out. The sheeted sill model (Fig. 7b) can also be successfully simulated, provided that 

vigorous deep hydrothermal circulation occurs near the ridge axis and there is some crystal 

subsidence from the axial magma lens (Maclennan et al., 2004, 2005).  

The vigor of hydrothermal convection in the lower crust depends on how close to the ridge 

axis hydrothermal fluids are able to penetrate deeply in the crust, and on permeability. Small 

changes in permeability may have a huge effect on the resulting thermal structure (e.g., 

Cherkaoui et al., 2003; Fontaine and Wilcock, 2007), and we do not know the permeability of 

in-situ lower crust, rendering thermal models highly uncertain and non-unique until tested by 

data in drill cores. If hydrothermal fluids penetrate sufficiently deep close enough to the ridge 

axis, they may lower the melting point of newly crystallized gabbro or gabbroic mush and 

generate more felsic melts (e.g., Koepke et al., 2007), resulting in the intrusion of silicic veins 

and plutons with distinctive isotope and compositional characteristics. Silicic veins, produced 

via crystal fractionation or partial melting, are essential to understanding the crustal budget of 

many geochemically important elements such as U, Th and Pb (e.g., Hart et al., 1999). 

The cooling rate of the lower crust, as a function of depth, can be estimated (i) using 

“geospeedometers” that exploit elemental (Fe, Ca, Li) diffusion rates in olivine, 

clinopyroxene, and plagioclase (Ozawa, 1986; Coogan et al., 2002, 2005a, 2005b; 

VanTongeren et al. 2008), or (ii) by analysis of plagioclase crystal size distributions in 

gabbros (Garrido et al., 2001). Given the potential for small-scale variability in cooling rates, 

due to fracture-controlled heterogeneous fluid circulation (Coogan et al., 2006), drill core 

provides the ideal samples for such studies. In addition, the locking of the Earth's 

geomagnetic field polarity in oceanic gabbros at ~500°C can provide strong constraints on 

cooling rate. Encountering a series of polarity reversals with increasing depth would reveal 

the record of the blocking isotherm moving deeper in the crust, with time intervals known 
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separately from calibrating the polarity time scale (e.g., Kidd, 1977). The depth over which 

polarity remains uniform is expected to increase with increasing cooling rate. 

3.4. Lithosphere aging, chemical fluxes, and limits and controlling factors of life 
The chemical evolution of the oceanic basement does not stop after the crust crystallizes. 

There is a discernable deficit in conductive heat flow out to 65 Ma on average (e.g., Stein & 

Stein, 1994) and some seawater-rock exchange probably occurs in ocean crust of all ages 

(Fig. 8). Well-established petrologic and geochemical techniques can be used to characterize 

the nature and relative timing of hydrothermal exchange between seawater and the 

lithosphere, the flux of fluid through the crust, and the depth to which fluid penetrates. 

Mineral geothermometers and cross-cutting vein mineral sequences, coupled with trace 

element, Sr isotope, and stable isotope compositions of whole rock samples and mineral 

separates can be used to establish the temperature- and chemical-evolution of the fluids in the 

crust and upper lithospheric mantle (e.g., Gregory and Taylor, 1981; Manning et al., 1996; 

Teagle et al., 1998a, 1998b; Bach et al., 2004; Coggon et al., 2004; Gillis et al., 2005), the 

extent of fluid channeling along fractures and veins (Manning et al., 1996; Banerjee and 

Gillis, 2001; Bosch et al., 2004; Coogan et al., 2006), and time integrated fluid fluxes (Bickle, 

1992; Bickle and Teagle, 1992; Teagle et al., 2003; Gillis et al., 2005). These will provide 

essential information on chemical and thermal exchange between the lithosphere and the 

oceans, key to global geochemical budgets. Stein and Stein (1994) inferred from heat flow 

data that 33% of the convective cooling of oceanic lithosphere occurs in crust more than ten 

million years old, although isothermal basement temperatures and modeling suggest that 

much of the hydrothermal fluid flow may be restricted to the uppermost few hundred meters 

of the crust. Common, albeit volumetrically minor, veins of low temperature hydrothermal 

phases such as prehnite, laumontite and zeolites in dikes and gabbros of the Troodos ophiolite 

(e.g., Vibetti et al., 1989) are evidence that there can be deep penetration of seawater-derived 

hydrothermal fluids. Deep drilling may actually sample active, low temperature off-axis 

hydrothermal fluid flow driven by the conductive cooling of the lithosphere. Drilling in 

mature crust where significant fluid-rock (±microbial) exchange has ceased will provide 

improved constraints on the role of hydrothermal alteration in influencing the chemical 

evolution of seawater (e.g., Davis et al., 2003; Nielsen et al., 2006), and the bulk composition 

of the igneous crust recycled into the mantle in subduction zones. Understanding 

hydrothermal interactions preserved in altered rocks and vein suites, geochemical exchanges, 

and the calculation of time integrated fluid fluxes (e.g., Gregory and Taylor, 1981; Bickle and 
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Teagle, 1992; Teagle et al., 2003; Gillis et al., 2005; Coogan, 2008) requires knowledge of 

ancient seawater chemical and isotopic compositions.  Recent evidence indicates that the 

major element concentrations and ratios (e.g., Mg/Ca and Sr/Ca) of seawater have changed 

markedly during the Neogene (e.g., Horita et al., 2002; Coggon et al., 2010), although this 

remains controversial (Broeker and Yu, 2011; Coggon et al., 2011). Hence, to avoid 

complications in interpreting hydrothermal alteration due to past changes in ocean chemistry, 

coring the youngest possible crust could be advantageous. Changes in the concentration of the 

main divalent cations in seawater (Ca, Mg, Sr) as well as oceanic pCO2 has led to the repeated 

switching throughout the Phanerozoic of aragonite and calcite as the dominant carbonate 

mineral precipitated from the oceans (Wilkinson and Algeo, 1989; Hardie, 1996; Horita et al., 

2002). The last change from a “calcite sea” to the modern “aragonite sea” occurred ~60 Ma 

ago. Ocean crust altered before the Tertiary exchanged elements and isotopes with seawater 

significantly different from today’s oceans. This is also reflected in the much greater 

proportion of carbonate minerals preserved within Mesozoic ocean crust compared with 

younger rocks (Alt and Teagle, 1999; Gillis and Coogan, 2011). 

While being altered by hydrothermal fluids, the upper oceanic crust becomes an extensive 

habitat for microorganisms. Endolithic microbes colonize fractures in glassy basaltic rocks, 

extracting energy and nutrients from the glass by dissolving it, and leaving behind biomarkers 

that reveal their former presence (e.g., Fisk et al., 1998; Furnes et al., 2001; Thorseth et al., 

2001; Bach and Edwards, 2003; Banerjee and Muehlenbachs, 2003; Kimura et al., 2003; 

Staudigel et al., 2006; McLoughlin et al., 2009; Schrenk et al., 2010; Edwards et al., 2011; 

Orcutt et al., 2011). Hydrogen and simple organic compounds can be produced abiotically 

where water interacts with olivine and ultramafic rocks (e.g., McCollom and Seewald, 2001; 

McCollom et al. 2010) in a variety of geotectonic settings, and are described at slow-

spreading mid-ocean ridges where serpentinized ultramafic rocks commonly occur at the 

seafloor (e.g., Schrenk et al., 2004; Kelley et al., 2005). In IODP Hole U1309D (Blackman et 

al., 2006) at the slow-spreading Mid-Atlantic ridge, evidence for a microbial community that 

can degrade hydrocarbons and fix carbon and nitrogen has been documented to 1313 mbsf in 

the recovered gabbroic section (Mason et al., 2010). Evidence for microbial activity in the 

oceanic crust has been growing in the past decade with an increasing number of dedicated 

studies and improving technology (e.g., Schrenk et al., 2010; Edwards et al., 2011; Orcutt et 

al., 2011).  Microbial activity in the sub seafloor biosphere may have a profound impact on 

processes and chemical fluxes during water-rock reactions but the depth limits, as well as the 
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controlling factors of microbiological activity in the oceanic basement have yet to be fully 

explored (Fig. 8). 

Exploring and characterizing the sub seafloor biosphere in the ocean crust will be pursued 

in the MoHole. Deep drilling will cross chemical and physical boundaries, involving energy, 

carbon, nutrients and porosity/permeability, which define our current understanding of 

habitability and may shed light on deep energy sources for microbial communities. Studies of 

high temperature and high-pressure microbial ecosystems have pushed the boundaries of 

microbial physiology (Kashefi and Lovley, 2003; Takai, 2008; Picard et al., 2011), and have 

revealed novel adaptations to extreme conditions. Deep drilling will provide access to rocky 

habitats at the "biotic fringe" (Fig. 8; e.g., Bach et al., 2006) to search for novel 

microorganisms and potentially lead to the discovery of new compounds with 

biotechnological and industrial applications. These environments may also be key in the 

search for primordial microbial, deep-seated microbial communities that may be relicts of the 

earliest life forms on Earth (e.g., Furnes et al., 2004; Banerjee et al., 2006). 

4. M2M PROJECT AREA, AND TECHNOLOGY DEVELOPMENTS  

Drilling the MoHole will be a challenging enterprise requiring space mission-levels of 

detailed planning and engineering. The depth of the required borehole (~ 6000m) is far 

beyond depths reached so far in ocean crust using conventional non-riser drilling (Fig. 3), but 

industry commonly drills deeper (10 km or more). However, the required water depth, the 

hardness of the formations encountered, and the temperature for the MoHole exceed current 

industry thresholds. The characteristics and location of the potential MoHole sites, as well as 

the needs for technological developments have been extensively discussed during the 

"MoHole" and "Mantle Frontier" workshops in 2010 (Ildefonse et al., 2010a, 2010b; 

Workshop Report Writing Group, 2011), with outcomes and recommendations summarized 

below. At the end of 2010, the IODP-MI Board of Governors gave its approval to IODP-MI 

(BoG Motion 1012-03) for a technical feasibility and cost analysis study of a MoHole, 

conducted by an independent company (Blade Energy Partners, 2011). Beyond the details of 

the various studied drilling scenarios, this report states that "drilling to the mantle is certainly 

feasible and that there are existing industry solutions to many of the technological challenges 

associated with drilling this type of borehole". 
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4.1. Geophysical Characteristics of the M2M Project Area 
The target for deep crustal penetration will ideally meet the following requirements. 

Satisfying requirements for points a to e is essential for success. More flexibility is allowed in 

meeting Points f to h, which are highly desirable but not essential.  

a. Crust formed at fast spreading rate (>80 mm/yr), 

b. Simple tectonic setting with low-relief seafloor and smooth basement; away from 

fracture zones, propagator pseudo faults, overlapping spreading basins, seamounts, or 

other indicators of late-stage intraplate volcanism, 

c. Crustal seismic velocity structure that fits our current understanding of “normal” fast-

spread Pacific crust, indicative of layered structure, 

d. A sharp Moho imaged with MCS techniques, 

e. A strong wide-angle Moho reflection (PmP), as observed in seismic refraction data, 

with clearly identifiable sub-Moho refractions (Pn), 

f. A clear upper mantle seismic anisotropy,  

g. Crust formed at a palaeo-latitude greater than ±15° to maximize utility of core 

magnetic data, 

h. A location with relatively high upper crustal seismic velocities indicative of massive 

volcanic formations to enable the initiation of a deep dill hole. 

Several technological constraints limit the range of potential sites: 

• Technology for re-circulating drilling mud (riser or alternative) is needed for ultra-deep 

drilling, but is currently untested at water depths greater than ~3000 m. Depths greater than 

4000 or 4500 m may exceed the capabilities of a reliable and affordable system, although it is 

difficult to anticipate on technology improvements over the next decade, as the hydrocarbon 

exploration ventures into progressively deeper frontiers. 

• Prior scientific ocean drilling experience is mostly limited to wall-rock temperatures less 

than 200°C. Temperatures higher than ~250°C may limit choices of drill bits and logging 

tools, decrease core recovery, and increase risk of hole failure, or require substantial re-design 

of drilling equipment. Based on basic plate cooling models, crust older than ~15-20 Ma 

should meet this requirement at Moho depths (Fig. 9). 

• Thickness of the crustal section above Moho must be at least a few hundred meters less 

than the maximum penetration/logging/recovery depth of the drilling system, to allow 

significant penetration in mantle peridotites.  

• Target area should be in a region with good weather conditions at least 8 (preferably 12) 

months/year, with calm seas and gentle ocean bottom currents. 
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• Sediment thickness should be greater than 50 m to support possible riser hardware and 

other seafloor infrastructure (re-entry cones/uppermost casing strings). 

• Targeted area should be close (~1000 km or less) to major port facilities. 

4.2. Potential sites 
Based on the scientific requirements and technological constraints outlined in section 4.1, 

three regions have been identified as potential M2M project areas (Ildefonse et al., 2010a, 

2010b; Fig. 10, Table 1). No region anywhere satisfies all of the desirable criteria. The key 

trade off is between the shallowest possible water depth (see section 5) found in younger 

crust, and lowest possible Moho temperatures (<~250°C; Fig. 9) found in older crust 

underlying >~4000 m seafloor.  

Region A (Fig. 10, Table 1) encompasses part of the Cocos Plate off Central America with 

lithospheric ages between 15 and 25 Ma. At its western limit on 15 Ma crust, this area 

includes ODP Hole 1256D (Wilson et al., 2006; Teagle et al., 2012), a site of on-going 

conventional drilling into intact ocean crust. MCS (Hallenborg et al., 2003; Wilson et al., 

2003) and wide-angle OBS data exist for the 15-17 Ma area in the vicinity of Site 1256. A 

significant advantage of the Cocos Plate area is that it is located within a corridor that spans 

the complete life cycle of a tectonic plate.  This makes it the only candidate where results 

from MoHole drilling can be placed within the context of the full ocean crustal evolution, 

from a modern spreading center (East Pacific Rise) to an active subduction zone (Central 

America). The major disadvantage of Site 1256 is the relatively high Moho temperature; this 

problem might be overcome in areas of older crust to the east (17-24 Ma).  

The region off Southern/Baja California (Fig. 10B, Table1) encompasses a section of the 

eastern Pacific Plate off Southern and Baja California, between ~20-33°N, and ~127-120°W. 

Crustal ages are ~20-35 Ma. Very little modern geophysical information exists from this 

region. A long, EW MCS transect ~300 km north of the Clipperton fracture zone (Eittreim et 

al, 1994) shows Moho reflections over most of the profile, bright and generally continuous for 

crustal ages 18-32 Ma, with uniform (~6 km) crustal thickness. The best-studied area is the 

“Deep Tow” site at 32°25’N, 125°45’W near San Diego (31-32 Ma; Luyendyk, 1970). 

Geophysical data on this site include deep-tow sidescan and bathymetry, 3.5 kHz profiler, 

magnetics, and single channel seismic profiles. No modern seismic data are available to 

evaluate crustal structure and Moho characteristics. 

The Hawaii region (Fig. 10C, table 1) is located north of Oahu in the flexural arch, where 

water depths are shallower than in the surrounding Cretaceous Pacific plate. The crust is ~80 
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Ma, and was formed at a half spreading rate of 35-40 mm/yr. Older crust appears more 

appealing for the search of the deepest limit of life. This region offers the lowest temperature 

at the Moho, but its general geological setting counterbalances this strong advantage. The 

contribution of the abundant arch volcanism northwest of the proposed site area (Clague et 

al., 1990, 2002), and of the Hawaiian hot spot south of the proposed site area (e.g., Leahy et 

al., 2010) to the crustal architecture remains to be established.  

4.3. Large-scale surveys: finding the right project area 
The existing geophysical data at the three potential sites are not sufficient to identify a 

clear M2M Project target area. The short-term priority should be conducting large-scale 

seismic surveys in the three regions to identify a MoHole target that meets the requirements 

listed in section 4.1. These surveys, which will necessarily require international collaboration 

and funding, should collect spatially coincident MCS data, wide-angle OBS data, multi-beam 

bathymetry, gravity, and magnetics. Heat flow data would also be useful. The characteristics 

of the required seismic surveys are listed in Ildefonse et al. (2010a). 

JAMSTEC (Japanese Agency for Marine-Earth Science and Technology) is planning a 2 

months survey cruise in Japanese FY 2013. Although region B (Fig. 10) was prioritized at the 

Kanazawa workshop for the short-term (because so little is known about this area, where 

depth/age/logistical criteria are viable), the available ship time is not long enough to allow for 

transit from Japan, and completion of the desired seismic profiles in the Eastern Pacific. 

Hence the cruise will survey the NE Hawaiian Arch region; this will be coordinated with the 

project submitted by Greg Moore (University of Hawaii) et al. to NSF (US National Science 

Foundation) in 2011. The planned MCS and OBS surveys are designed to characterize the 

crustal structure and Moho reflectivity in the Hawaiian Arch north of Oahu, and north of the 

Arch in deeper waters. New reconnaissance profiling in region A was considered a lower 

immediate priority in Kanazawa since EW9903 data provides some good-quality information 

in that region (Wilson et al., 2003; Hallenborg et al., 2003). However, conducting a small 

survey in this area with state of the art seismic capabilities for comparison with the EW9903 

data will be crucial to assess the reason(s) for the low apparent Moho reflectivity, and to 

image the areas east and north of Site 1256. A proposal to re-analyze the EW9903 MCS 

dataset and compare it to similar datasets from other regions where Moho reflectivity is 

strong is currently under review.  This will determine whether the EW9903 weak reflectivity 

of the Moho is a natural consequence of crust formed at super-fast rates; or alternatively that 
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EW9903 data may not be of optimal quality for Moho imaging due to experimental 

parameters, warranting new surveys in the area. 

The choice of the appropriate MoHole site, and subsequent start of operations are likely 

still several years ahead, and some site characteristics (such as water depth) that are now 

perceived as major drawbacks may become less problematic in the future, as drilling 

technology improves. At this stage, we remain open to other possible areas of interest, 

possibly in deeper water (i.e., in colder lithosphere), pending on technological development. 

After an appropriate drilling target has been selected, additional, detailed seismic surveys will 

be needed in the vicinity of the target. Details of the recommended experiments, including 3D 

MCS and OBS surveys for accurate imaging of intracrustal and Moho reflectors, assessing 

crustal structure and thickness, and characterizing upper mantle velocity structure/anisotropy, 

are listed in Ildefonse et al. (2010a). 

4.4 Technology and Engineering Developments for M2M 
Drilling into the uppermost mantle will require a drill hole at least 6000 m deep, in water 

depths between 3500 and 4500 m. M2M is arguably at the point where the framework for the 

operations can be constructed, since it is now technologically feasible to drill such a hole 

(Blade Energy Partners, 2011). Technology selection and engineering development will be 

key components of the scientific success of the project. It is important to identify potential 

issues in drilling and coring engineering from the past and ongoing ocean drilling expeditions 

(see "Deep drilling of intact ocean crust: harnessing past lessons to inform future endeavors" 

in Teagle et al., 2012), and to find solutions to overcome the problems encountered. 

Technology selection process and planning for key engineering developments should be 

launched as soon as possible in conjunction with site-survey efforts. To do this, establishing a 

realistic roadmap, including project scoping, development and testing, all within a unified 

project management structure, is imperative. To drill an ultra-deep borehole, the provision for 

continuous mud circulation is a top priority technical requirement. Other major areas 

requiring engineering development include logging and coring in a high-temperature 

environment, specialized drill bits for abrasive, hard, hot rocks, specialized drill string with 

high tensile strength, low-weight drilling mud for use at high temperature, and new casing 

and cementing materials and strategies. In sampling the rock-hosted biosphere in the MoHole 

we will also confront unprecedented challenges, such as precisely discerning living and dead 

cells, and discriminating native microflora from contaminants, which will require creative and 

innovative technological solutions. Specific issues to be considered include the use of high-
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resolution next-generation DNA sequencing approaches, highly sensitive biomarker analyses, 

and considering pressure as an experimental variable in microbiological studies. High 

temperatures can be directly estimated from novel RNA analysis (Kimura et al., 2010). 
A promising candidate technology for drilling the MoHole is riser drilling. The DV Chikyu 

is currently equipped with a riser system with a maximum rated water depth of 2500 m. 

Significant engineering development would be required to prepare Chikyu for riser drilling in 

water depths ≥4000 m. Several other technologies are also being considered to drill safely and 

efficiently to the target depth, such as a Surface Blow Out Preventer (BOP) combined with a 

slim riser pipe (casing pipe) and a Subsea Isolation Device (SID), or Riserless Mud Recovery 

(Myers, 2008) with a seafloor mud circulation pump and return line. The lithologies 

intersected by the borehole drilled to Moho depths will be free from overpressures, 

hydrocarbons, or other geohazards. However, although a BOP will probably not be needed for 

well control, the use of a BOP might be required by safety regulations. 

Operationally, major challenges will be associated with collecting the cored material, 

making in-situ measurements, installing casing, and keeping the borehole open for successive 

deepening in a multiyear, multiphase operation. To prepare for this, all issues related to 

drilling, casing, coring, and logging must be adequately explored and included in a 

comprehensive and complete operation plan, as soon as the site characteristics are known (see 

key elements listed in Ildefonse et al., 2010a). The feasibility study (Blade Energy Partners, 

2011) is encouraging. The report concludes that there are existing solutions to both the riser 

design and drill-string design issues. The key issues identified are the development of 1) 

downhole tools capable of withstanding the high downhole temperatures, and 2) bits with 

improved bit life, which will reduce operation cost and improve coring techniques. 

After completion of drilling, coring, and logging, the MoHole should be used for 

experiments, including vertical seismic profiles, and long-term geophysical, geochemical 

(fluid, gases), and microbiological monitoring. Instrumenting the MoHole will eventually be a 

key, last-stage goal of M2M. Hence, the sub-sea equipment and borehole should be 

constructed to accommodate observatory science (fluid monitoring, microbiology incubation 

experiments). This implies ROV access to the wellhead and the ability to access the borehole 

through a BOP or SID. 

5. KEYS FOR SUCCESS 

The keys for the M2M project include considerations on sampling strategy, technology 

development, industry engagement, and public support. M2M would be one of the largest 
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scientific endeavors in Earth science history, and this challenge should provide precious 

opportunities to a diversity of Earth and Life scientists, engineers and technologists (Ildefonse 

et al., 2010a, 2010b). The timeline for M2M is difficult to predict precisely as it depends 

strongly on the time and money invested to move ahead. It will likely last 10 years or more. 

The estimated cost of the operational part of the project is also difficult to predict, depending 

on the choices that will be made regarding location (in particular water depth; the shallower 

the better), and coring all or only part of the drilled section (Blade Energy Partners, 2011).  

Achieving our primary scientific goals ideally requires continuous core to the bottom of 

the hole (Fig. 11a). If technically and/or financially not feasible, it will require a minimum 

amount of continuous core samples. To be regarded as successful, M2M must at least return 

all of the following (Fig. 11): 

• Continuous coring of 500 m of peridotites and associated lithologies in the uppermost 

mantle below the Moho, 

• Continuous coring, including samples of all boundaries, across the region identified by 

seismic imaging as the Moho, and the lithologic transition from cumulate magmatic rocks to 

residual peridotites (these may or may not be the same target), 

• Continuous coring of the lower 500 m of the mafic and ultramafic cumulate rocks in 

the oceanic crust, 

• Sufficient cores from intervals of the lower oceanic crust to test models of crustal 

accretion and melt movement, to resolve the geometry and intensity of hydrothermal 

circulation, and to document the limits and activity of the deep microbial biosphere, 

• A continuous, comprehensive suite of geophysical logs (wireline, Logging While 

Drilling/Coring) and borehole experiments to measure in situ physical properties, to acquire 

borehole images, and to identify key geophysical and lithologic regions and transitions (Layer 

2-3 boundary, Moho) throughout the ocean crust and into the upper mantle. 
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Figure 10. Bathymetric map showing the three selected 
areas for large-scale MoHole site survey. A) Cocos plate 
region; B) off Southern/Baja California region; C) NE 
Hawaiian Arch region.

Figure 11. Technology and financial constraints 
permitting, continuous coring all the way to 
the Moho and then a significant distance (~500 m) 
into the uppermost mantle (A) would be the best 
approach to achieve the scientific goals of this 
project. However, approaches that mix continuous 
wireline coring with spot coring (e.g., (B) long 
coring of key sections or (C) 10-m coring before 
bit change every 50 m) may need to be considered. 
In any case, significant lengths of continuous cores 
across major lithologic and geophysical transitions 
are required to answer the fundamental scientific 
questions. The left column shows the anticipated 
lithology, based on ophiolite observations.
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Candidate Project Area A - Cocos Plate B - Off Southern/Baja 
California 

C - Hawaii 

Location 6.7-8.7°N 
89.5-91.9°W 

20-33°N 
120-127°W 

22.9-23.9°N 
154.5-155.8°W 

Half Spreading Rate (mm/yr) 100-110 45-60 35-40 
Crustal Age (Ma) ~15-19 ~20-35 ~78-81 
Inferred Moho T (°C)  250  250 ~150 
Water Depth (m) 3400-3650 Mostly 4000-4500, 

some shallower area 
4050-4500 

Sediment Thickness (m) 250-300 80-130 ~200 
Crustal Thickness (m) 5500 (?) ? 5500-6000 
Total Length to the Moho (m) 8700-9200 (?). ? 9500-10000 
Original Latitude near equator 25-33 near equator 
Advantages - Shallowest depth 

- Modest crustal 
thickness 
- Sits within a corridor 
that includes a 
complete tectonic plate 
life cycle 
- 12 month weather 
window, 3 m swell rare  

- Large range of depth 
- Modest Moho T 
- Higher latitude 
- Portions of region are 
close enough for shore 
logistics base 
 

- Lowest T 
- Nearby major port 
- 12-month weather 
window (consistent 
trade winds but only 
episodic storms) 
- Deepest limit of life 

Disadvantages - Highest Moho T 
- Poor Moho reflection 
in existing data 
- Faster than present-
day fastest spreading 
rate 
- Near equator 
- 1.0-1.5 knots whole-
water-column tidal 
currents 
 

- Few data available 
- Off-ridge volcanism 

- Deepest water 
- Crustal structure is 
potentially affected by 
hotspot volcanism 
- Close to arch 
volcanism; many 
seafloor volcanic fileds 
- Near equator 
- Lowest end of fast-
spreading rates 

 
Table 1. Candidate areas for the MoHole project, with principal characteristics, advantages and 
disadvantages (see Ildefonse et al., 2010a, 2010b, for further details on candidate regions) 
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FULL LIST OF PROPONENTS 

Lead proponents : 
Susumu Umino, Kanazawa University, Japan, sesumin@staff.kanazawa-u.ac.jp 

Volcanology and igneous petrology 
Benoît Ildefonse, CNRS, Montpellier University, France, ildefonse@um2.fr 

Petrophysics and tectonics 
Peter B. Kelemen, LDEO, Columbia University, USA, peterk@ldeo.columbia.edu 

Mantle and igneous petrology and geochemistry 
Shuichi Kodaira, JAMSTEC/IFREE, Yokosuka, Japan, kodaira@jamstec.go.jp 

Seismology 
Katsuyoshi Michibayashi, Shizuoka University, Japan, sekmich@ipc.shizuoka.ac.jp 

Mantle and igneous petrology and structures 
Tomoaki Morishita, Kanazawa University, Japan, moripta@staff.kanazawa-u.ac.jp 

Mantle and igneous petrology and geochemistry 
Damon A.H. Teagle, NOCS, Southampton, UK, damon.teagle@southampton.ac.uk 

Alteration petrology and geochemistry 

Co-proponents : 
Natsue Abe, JAMSTEC/IFREE, Yokosuka, Japan, abenatsu@jamstec.go.jp 

Mantle petrology and geochemistry 
Olivier Alard, CNRS, Montpellier University, France, oalard@univ-montp2.fr 

Mantle petrology and geochemistry, planetary evolution 
Shoji Arai, Kanazawa University, Japan, ultrasa@staff.kanazawa-u.ac.jp 

Mantle and igneous petrology and geochemistry 
Gary Acton, University of California, Davis, USA, acton@geology.ucdavis.edu 

Paleomagnetism, rock magnetism 
Jeffrey C. Alt, University of Michigan, Ann Arbor, USA, jalt@umich.edu 

Alteration petrology and geochemistry 
Ryo Anma, University of Tsukuba, Japan, ranma@sakura.cc.tsukuba.ac.jp 

Structural geology 
Wolfgang Bach, Universität Bremen, Germany, wbach@uni-bremen.de 

Alteration petrology and geochemistry, subseafloor biosphere 
Chris Ballentine, University of Manchester, UK, chris.ballentine@manchester.ac.uk 

Isotope geochemistry, planetary evolution 
Neil R. Banerjee, University of Western Ontario, Canada, neil.banerjee@uwo.ca 

Alteration petrology and geochemistry, Subseafloor biosphere 
Juan Pablo Canales, WHOI, Woods Hole, USA, jpcanales@whoi.edu 

Seismology 
Mathilde Cannat, CNRS, IPG, Paris, France, cannat@ipgp.fr 

Geophysics and tectonics 
Richard L. Carlson, Texas A&M University, USA, carlson@geo.tamu.edu 

Seismology and petrophysics 
Rosalind M. Coggon, Imperial College London, UK, r.coggon@imperial.ac.uk 

Alteration petrology and geochemistry 
Laurence Coogan, University of Victoria, Canada, lacoogan@uvic.ca 

Igneous petrology and geochemistry 
Henry J.B. Dick, WHOI, Woods Hole, USA, hdick@whoi.edu 

Petrology, geochemistry and tectonics 
Toshiya Fujiwara, JAMSTEC/IFREE, Yokohama, Japan, toshi@jamstec.go.jp 

Marine geophysics 
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Yoshio Fukao, JAMSTEC/IFREE, Yokosuka, Japan, fukao@jamstec.go.jp 
Geophysics, seismology 

Jeffrey S. Gee, Scripps, UCSD, San Diego, USA, jsgee@ucsd.edu 
Paleomagnetism, rock magnetism 

Kathryn Gillis, University of Victoria, Canada, kgillis@uvic.ca 
Alteration petrology and geochemistry 

Marguerite Godard, CNRS, Montpellier University, France, marguerite.godard@um2.fr 
Mantle and igneous petrology and geochemistry 

Saskia Goes, Imperial College London, UK, sgoes@imperial.ac.uk 
Geophysics, dynamics of lithosphere and mantle 

Takeshi Hanyu, JAMSTEC/IFREE, Yokosuka, Japan, hanyut@jamstec.go.jp 
Isotope geochemistry 

Alistair Harding, Scripps, UCSD, San Diego, USA, aharding@ucsd.edu 
Seismology 

Yumiko Harigane, AIST, Tsukuba, Japan, y-harigane@aist.go.jp 
Structural Geology 

Erik Hauri, CIW, Washington DC, USA, hauri@dtm.ciw.edu 
Geochemistry, planetary evolution 

Eric Hellebrand, University of Hawaii, Honolulu, USA, ericwgh@hawaii.edu 
Mantle Petrology and geochemistry 

Ikuo Katayama, Hiroshima University, Japan, katayama@hiroshima-u.ac.jp 
Rheology, petrophysics 

Jeffrey A. Karson, Syracuse University, USA, jakarson@syr.edu 
Petrology and tectonics 

Hiroyuki Kimura, Shizuoka University, Japan, shkimur@ipc.shizuoka.ac.jp 
Microbiology 

Jun-Ichi Kimura, JAMSTEC/IFREE, Yokosuka, Japan, jkimura@jamstec.go.jp 
Igneous petrology and geochemistry 

Juergen Koepke, Universität Hannover, Germany, koepke@mineralogie.uni-hannover.de 
Experimental petrology and geochemistry 

Hidenori Kumagai, JAMSTEC/IFREE, Yokosuka, Japan, kumagai@jamstec.go.jp 
Noble gas and igneous geochemistry 

C. Johan Lissenberg, Cardiff University, UK, lissenbergcj@cardiff.ac.uk 
Igneous petrology and geochemistry 

John Maclennan, University of Cambridge, UK, jmac05@esc.cam.ac.uk 
Geophysics 

Jinichiro Maeda, Hokkaido University, Japan, jinmaeda@ep.sci.hokudai.ac.jp 
Igneous petrology and geochemistry 

Christopher J. MacLeod, Cardiff University, UK, macleod@cf.ac.uk 
Petrology and tectonics 

D. Jay Miller, IODP, TAMU, College Station, USA, miller@iodp.tamu.edu 
Petrology and petrophysics, hard rock drilling 

Sumio Miyashita, Niigata University, Japan, miyashit@geo.sc.niigata-u.ac.jp 
Igneous petrology 

Gregory F. Moore, University of Hawaii, Honolulu, USA, gmoore@Hawaii.edu 
Seismology 

Antony Morris, University of Plymouth, UK, amorris@plymouth.ac.uk 
Paleomagnetism, rock magnetism 

Kentaro Nakamura, JAMSTEC/PEL, Yokosuka, Japan, kentaron@jamstec.go.jp 
Alteration petrology and geomicrobiology 

James H. Natland, University of Miami, USA, jnatland@rsmas.miami.edu 
Igneous petrology and geochemistry 
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Toshio Nozaka, Okayama University, Japan, nozaka@cc.okayama-u.ac.jp 
Metamorphic petrology 

Mladen Nedimovic, Dalhousie University, Canada, mladen@dal.ca 
Seismology 

Yasuhiko Ohara, Hydrographic and Oceanographic Department of Japan, ohara@jodc.go.jp 
Mantle petrology 

Eiji Ohtani, Tohoku University, Sendai, Japan, ohtani@m.tohoku.ac.jp 
High-pressure mineral physics 

Ian J. Parkinson, The Open University, UK, i.j.parkinson@open.ac.uk 
Isotope geochemistry and petrology 

Philippe Pezard, CNRS, Montpellier University, France, philippe.pezard@gm.univ-montp2.fr 
Petrophysics and borehole geophysics 

Mark Rehkamper, Imperial College London, UK, markrehk@imperial.ac.uk 
Isotope geochemistry 

Tetsuya Sakuyama, JAMSTEC/IFREE, Yokosuka, Japan, sakuyama@jamstec.go.jp 
Igneous petrology and geochemistry 

Takeshi Sato, JAMSTEC/IFREE, Yokohama, Japan, tsato@jamstec.go.jp 
Seisomology 

Matthew O. Schrenk, East Carolina University, Greenville, USA, schrenkm@ecu.edu 
Microbiology 

Nobukazu Seama, Kobe University, Japan, seama@kobe-u.ac.jp 
Marine geophysics 

Jonathan E. Snow, University of Houston, US, jesnow@uh.edu 
Mantle petrology and geochemistry 

Eiichi Takazawa, Niigata University, Japan, takazawa@geo.sc.niigata-u.ac.jp 
Mantle petrology and geochemistry 

Masako Tominaga, Michigan State University, East Lansing, USA, mtominaga@whoi.edu 
Marine geophysics 

Takeshi Tsuji, Kyoto University, Japan, tsuji@earth.kumst.kyoto-u.ac.jp 
Seismology, borehole geophysics 

Peter E. van Keken, University of Michigan, Ann Arbor, USA, keken@umich.edu 
Mantle dynamics, planetary evolution 

Jessica M. Warren, Stanford University, USA, warrenj@stanford.edu 
Mantle petrology, geochemistry and rheology 

Douglas S. Wilson, University of California, Santa Barbara, USA, dwilson@geol.ucsb.edu 
Geophysics 
 

NB: given the anticipated duration of the M2M project, the list of lead and co-proponents is 
expected to evolve with time, as the M2M community will continue building up. 
 

 

 

 

 

“Perhaps it is true that we won't find out as much about the earth’s interior 
from one hole as we hope. To those who raise that objection I say, if there 
is not a first hole, there cannot be a second or a tenth or a hundredth hole. 
We must make a beginning.”  
Harry Hess, April 1958 
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